Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Infect Dis ; 223(3): 403-408, 2021 02 13.
Article in English | MEDLINE | ID: mdl-32601704

ABSTRACT

We performed a retrospective study of coronavirus disease 2019 (COVID-19) in people with human immunodeficiency virus (PWH). PWH with COVID-19 demonstrated severe lymphopenia and decreased CD4+ T cell counts. Levels of inflammatory markers, including C-reactive protein, fibrinogen, D-dimer, interleukin 6, interleukin 8, and tumor necrosis factor α were commonly elevated. In all, 19 of 72 hospitalized individuals (26.4%) died and 53 (73.6%) recovered. PWH who died had higher levels of inflammatory markers and more severe lymphopenia than those who recovered. These findings suggest that PWH remain at risk for severe manifestations of COVID-19 despite antiretroviral therapy and that those with increased markers of inflammation and immune dysregulation are at risk for worse outcomes.


Subject(s)
COVID-19/immunology , COVID-19/virology , HIV Infections/immunology , HIV Infections/virology , Aged , COVID-19/blood , COVID-19/mortality , Female , HIV Infections/blood , HIV Infections/mortality , HIV-1/isolation & purification , Hospitalization/statistics & numerical data , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Inflammation Mediators/blood , Inflammation Mediators/immunology , Lymphocyte Count , Lymphopenia/virology , Male , Middle Aged , New York/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
2.
BMC Genomics ; 22(1): 343, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980141

ABSTRACT

BACKGROUND: Bovine TB (bTB), caused by infection with Mycobacterium bovis, is a major endemic disease affecting global cattle production. The key innate immune cell that first encounters the pathogen is the alveolar macrophage, previously shown to be substantially reprogrammed during intracellular infection by the pathogen. Here we use differential expression, and correlation- and interaction-based network approaches to analyse the host response to infection with M. bovis at the transcriptome level to identify core infection response pathways and gene modules. These outputs were then integrated with genome-wide association study (GWAS) data sets to enhance detection of genomic variants for susceptibility/resistance to M. bovis infection. RESULTS: The host gene expression data consisted of RNA-seq data from bovine alveolar macrophages (bAM) infected with M. bovis at 24 and 48 h post-infection (hpi) compared to non-infected control bAM. These RNA-seq data were analysed using three distinct computational pipelines to produce six separate gene sets: 1) DE genes filtered using stringent fold-change and P-value thresholds (DEG-24: 378 genes, DEG-48: 390 genes); 2) genes obtained from expression correlation networks (CON-24: 460 genes, CON-48: 416 genes); and 3) genes obtained from differential expression networks (DEN-24: 339 genes, DEN-48: 495 genes). These six gene sets were integrated with three bTB breed GWAS data sets by employing a new genomics data integration tool-gwinteR. Using GWAS summary statistics, this methodology enabled detection of 36, 102 and 921 prioritised SNPs for Charolais, Limousin and Holstein-Friesian, respectively. CONCLUSIONS: The results from the three parallel analyses showed that the three computational approaches could identify genes significantly enriched for SNPs associated with susceptibility/resistance to M. bovis infection. Results indicate distinct and significant overlap in SNP discovery, demonstrating that network-based integration of biologically relevant transcriptomics data can leverage substantial additional information from GWAS data sets. These analyses also demonstrated significant differences among breeds, with the Holstein-Friesian breed GWAS proving most useful for prioritising SNPS through data integration. Because the functional genomics data were generated using bAM from this population, this suggests that the genomic architecture of bTB resilience traits may be more breed-specific than previously assumed.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Genome-Wide Association Study , Genomics , Macrophages, Alveolar , Tuberculosis, Bovine/genetics
3.
J Infect Dis ; 211(9): 1467-75, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25404520

ABSTRACT

Soluble factors from CD8(+) T cells and cervicovaginal mucosa of women are recognized as important in controlling human immunodeficiency virus type 1 (HIV-1) infection and transmission. Previously, we have shown the strong anti-HIV-1 activity of prothymosin α (ProTα) derived from CD8(+) T cells. ProTα is a small acidic protein with wide cell distribution, to which several functions have been ascribed, depending on its intracellular or extracellular localization. To date, activities of ProTα have been attributed to a single protein known as isoform 2. Here we report the isolation and identification of 2 new ProTα variants from CD8(+) T cells and cervicovaginal lavage with potent anti-HIV-1 activity. The first is a splice variant of the ProTα gene, known as isoform CRA_b, and the second is the product of a ProTα gene, thus far classified as a pseudogene 7. Native or recombinant ProTα variants potently restrict HIV-1 replication in macrophages through the induction of type I interferon. The baseline expression of interferon-responsive genes in primary human cervical tissues positively correlate with high levels of intracellular ProTα, and the knockdown of ProTα variants by small interfering RNA leads to downregulation of interferon target genes. Overall, these findings suggest that ProTα variants are innate immune mediators involved in immune surveillance.


Subject(s)
Body Fluids/chemistry , CD8-Positive T-Lymphocytes/metabolism , HIV-1/drug effects , Interferon Type I/metabolism , Protein Precursors/metabolism , Thymosin/analogs & derivatives , Virus Replication/drug effects , Amino Acid Sequence , Anti-HIV Agents/pharmacology , Cells, Cultured , Female , Gene Expression Regulation/drug effects , HIV-1/physiology , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Interferons , Interleukins/genetics , Interleukins/metabolism , Macrophages , Molecular Sequence Data , Protein Precursors/genetics , Thymosin/genetics , Thymosin/metabolism , Virus Replication/physiology
4.
Clin Infect Dis ; 58(6): 873-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24336914

ABSTRACT

BACKGROUND: There is an international epidemic of hepatitis C virus (HCV) infection among human immunodeficiency virus (HIV)-infected men who have sex with men. Sustained virologic response (SVR) rates with pegylated interferon and ribavirin treatment are higher in these men during acute HCV than during chronic HCV, but treatment is still lengthy and SVR rates are suboptimal. METHODS: We performed a pilot study of combination therapy with telaprevir, pegylated interferon, and ribavirin in acute genotype 1 HCV infection in HIV-infected men. Men who were treated prior to the availability of, or ineligible for, telaprevir were the comparator group. The primary endpoint was SVR12, defined as an HCV viral load <5 IU/mL at least 12 weeks after completing treatment. RESULTS: In the telaprevir group, 84% (16/19) of men achieved SVR12 vs 63% (30/48) in the comparator group. Among men with SVR, median time to undetectable viral load was week 2 in the telaprevir group vs week 4 in the comparator group, and 94% vs 53% had undetectable viral loads at week 4. Most patients (81%) who achieved SVR in the telaprevir group received ≤12 weeks of treatment and there were no relapses after treatment. The overall safety profile was similar to that known for telaprevir-based regimens. CONCLUSIONS: Incorporating telaprevir into treatment of acute genotype 1 HCV in HIV-infected men halved the treatment duration and increased the SVR rate. Larger studies should be done to confirm these findings. Clinicians should be alert to detect acute HCV infection of HIV-infected men to take advantage of this effective therapy and decrease further transmission in this epidemic.


Subject(s)
Antiviral Agents/therapeutic use , HIV Infections/virology , Hepatitis C/drug therapy , Hepatitis C/virology , Oligopeptides/therapeutic use , Adult , Drug Therapy, Combination , Homosexuality, Male , Humans , Male , Middle Aged , Pilot Projects
5.
BMC Genomics ; 15: 234, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24669966

ABSTRACT

BACKGROUND: In both beef and dairy cattle, the majority of early embryo loss occurs within the first 14 days following insemination. During this time-period, embryos are completely dependent on their maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to their survival. The objective of this study was to investigate whether differences in endometrial gene expression during the mid-luteal phase of the estrous cycle exist between crossbred beef heifers ranked as either high (HF) or low fertility (LF) (following four rounds of artificial insemination (AI)) using the Affymetrix® 23 K Bovine Gene Chip. RESULTS: Conception rates for each of the four rounds of AI were within a normal range: 70-73.3%. Microarray analysis of endometrial tissue collected on day 7 of the estrous cycle detected 419 differentially expressed genes (DEG) between HF (n = 6) and LF (n = 6) animals. The main gene pathways affected were, cellular growth and proliferation, angiogenesis, lipid metabolism, cellular and tissue morphology and development, inflammation and metabolic exchange. DEG included, FST, SLC45A2, MMP19, FADS1 and GALNT6. CONCLUSIONS: This study highlights, some of the molecular mechanisms potentially controlling uterine endometrial function during the mid-luteal phase of the estrous cycle, which may contribute to uterine endometrial mediated impaired fertility in cattle. Differentially expressed genes are potential candidate genes for the identification of genetic variation influencing cow fertility, which may be incorporated into future breeding programmes.


Subject(s)
Endometrium/metabolism , Estrous Cycle , Fertility/genetics , Animals , Cattle , Embryo, Mammalian/metabolism , Female , Gene Expression , Insemination, Artificial , Luteal Phase , Oligonucleotide Array Sequence Analysis , Progesterone/analysis
6.
BMC Cancer ; 14: 887, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25428203

ABSTRACT

BACKGROUND: Bevacizumab improves progression free survival (PFS) and overall survival (OS) in metastatic colorectal cancer patients however currently there are no biomarkers that predict response to this treatment. The aim of this study was to assess if differential protein expression can differentiate patients who respond to chemotherapy and bevacizumab, and to assess if select proteins correlate with patient survival. METHODS: Pre-treatment serum from patients with metastatic colorectal cancer (mCRC) treated with chemotherapy and bevacizumab were divided into responders and nonresponders based on their progression free survival (PFS). Serum samples underwent immunoaffinity depletion and protein expression was analysed using two-dimensional difference gel electrophoresis (2D-DIGE), followed by LC-MS/MS for protein identification. Validation on selected proteins was performed on serum and tissue samples from a larger cohort of patients using ELISA and immunohistochemistry, respectively (n = 68 and n = 95, respectively). RESULTS: 68 proteins were identified following LC-MS/MS analysis to be differentially expressed between the groups. Three proteins (apolipoprotein E (APOE), angiotensinogen (AGT) and vitamin D binding protein (DBP)) were selected for validation studies. Increasing APOE expression in the stroma was associated with shorter progression free survival (PFS) (p = 0.0001) and overall survival (OS) (p = 0.01), DBP expression (stroma) was associated with shorter OS (p = 0.037). Increasing APOE expression in the epithelium was associated with a longer PFS and OS, and AGT epithelial expression was associated with a longer PFS (all p < .05). Increasing serum AGT concentration was associated with shorter OS (p = 0.009). CONCLUSIONS: APOE, DBP and AGT identified were associated with survival outcomes in mCRC patients treated with chemotherapy and bevacizumab.


Subject(s)
Angiotensinogen/blood , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents/administration & dosage , Apolipoproteins E/blood , Colorectal Neoplasms/drug therapy , Vitamin D-Binding Protein/blood , Adult , Aged , Aged, 80 and over , Bevacizumab , Biomarkers, Tumor/blood , Colorectal Neoplasms/blood , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Middle Aged , Neoplasm Metastasis , Proteomics , Survival Analysis , Treatment Outcome
7.
Reprod Fertil Dev ; 26(2): 282-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23374643

ABSTRACT

The uterine histotroph provides essential nutrition to the developing conceptus during the preimplantation period of pregnancy. The objective of the present study was to examine the effects of cycle stage and progesterone (P4) concentrations in the blood on the recoverable quantities of amino acids and glucose in the histotroph during the preimplantaion period of conceptus development. Following oestrus, dairy heifers were assigned to low, control or high P4 groups (n=6 heifers per treatment and time point). The uterine horn ipsilateral to the corpus luteum was flushed on either Day 7 or Day 13. The present study quantified 24 amino acids and glucose in the uterine flushings using HPLC and fluorometry, respectively. Heifers in the low P4 group had lower plasma concentrations of P4 throughout the cycle, whereas heifers in the high group had higher plasma concentrations of P4 between Days 3 and 7 compared with the control group (P<0.05). Total recoverable neutral (Ser, Gln, Gly, Thr, Cit, ß-Ala, Tau, Ala, Tyr, Trp, Met, Val, Phe, Ile, Leu, Pro and Cys), acidic (Glu) and basic (His, Arg, Orn and Lys) amino acids were greater (P<0.05) on Day 13 than on Day 7. There was no significant difference in the amount of Asp or Asn between Day 7 and Day 13. The amount of amino acids recovered on Day 7 was similar across treatment groups. On Day 13, the amount of Asn, His and Thr was lower (P<0.05) in the low P4 heifers compared with the controls and/or high P4 heifers. Quantities of glucose were not altered by cycle stage or P4 treatment. In conclusion, the stage of oestrous cycle and P4 play important roles in modulating amino acids in the histotroph, a potentially critical factor for early embryonic and/or conceptus survival.


Subject(s)
Amino Acids/metabolism , Estrous Cycle/drug effects , Glucose/metabolism , Progesterone/administration & dosage , Uterus/drug effects , Administration, Intravaginal , Animals , Cattle , Chromatography, High Pressure Liquid , Estrous Cycle/blood , Female , Fluorometry , Progesterone/blood , Time Factors , Uterus/cytology , Uterus/metabolism
8.
Tuberculosis (Edinb) ; : 102453, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38071177

ABSTRACT

Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.

9.
Proteomics ; 12(12): 2014-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22623423

ABSTRACT

Early embryo loss is a key factor affecting fertility in dairy and beef herds. Prior to implantation, the bovine embryo spends around 16 days free-floating in the uterine environment and is dependent on the composition of uterine fluid for normal growth and development. However, there is a lack of information regarding the protein composition of the bovine uterus and how it relates to plasma. In this study, uterine flushings (UF) (n = 6) and blood plasma (n = 4) were collected from beef heifers on day 7 of the oestrous cycle, albumin depleted and compared using iTRAQ proteomics. A total of 35 proteins were higher and 18 were lower in UF including metabolic enzymes, proteins with anti-oxidant activity and those involved in modulation of the immune response. This study confirms the dynamic nature of the bovine uterine proteome and that it differs from plasma. Factors affecting the uterine proteome and how it impacts on embryo survival warrant further study.


Subject(s)
Blood Proteins/analysis , Proteome/analysis , Uterus/chemistry , Animals , Blood Proteins/chemistry , Cattle , Estrus/blood , Estrus/metabolism , Female , Isotope Labeling , Proteome/chemistry , Proteomics
10.
J Proteome Res ; 11(5): 3004-18, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22463384

ABSTRACT

Uterine secretions, or histotroph, are a critical component for early embryo survival, functioning as the sole supply of vitamins, minerals, enzymes, and other myriad of nutrients required by the developing conceptus before implantation. Histotroph is therefore a promising source for biomarkers of uterine function and for enhancing our understanding of the environment supporting early embryo development and survival. Utilizing label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics, we characterized the uterine proteome at two key preimplantation stages of the estrous cycle in high fertility cattle. We identified 300 proteins on Day 7 and 510 proteins on Day 13 including 281 proteins shared between days. Five proteins were more abundant (P < 0.05) on Day 7 compared with Day 13 and included novel histotroph proteins cytokeratin 10 and stathmin. Twenty-nine proteins were more abundant (P < 0.05) including 13 unique on Day 13 compared with Day 7 and included previously identified legumain, metalloprotease inhibitor-2, and novel histotroph proteins chromogranin A and pyridoxal kinase. Functional analysis of the 34 differentially expressed proteins (including 14 novel to histotroph) revealed distinct biological roles putatively involved in early pregnancy, including remodelling of the uterine environment in preparation for implantation; nutrient metabolism; embryo growth, development and protection; maintenance of uterine health; and maternal immune modulation. This study is the first reported LC-MS/MS based global proteomic characterization of the uterine environment in any domesticated species before implantation and provides novel information on the temporal alterations in histotroph composition during critical stages for early embryo development and uterine function during the early establishment of pregnancy.


Subject(s)
Blastocyst/metabolism , Estrous Cycle/metabolism , Proteomics/methods , Uterus/metabolism , Animals , Cattle , Chromatography, Liquid , Cysteine Endopeptidases/metabolism , Embryonic Development , Female , Keratin-10/metabolism , Pregnancy , Protein Interaction Maps , Proteome/analysis , Proteome/metabolism , Stathmin/metabolism , Structure-Activity Relationship , Tandem Mass Spectrometry , Time Factors
11.
BMC Genomics ; 13: 16, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22235840

ABSTRACT

BACKGROUND: The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. RESULTS: In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952) of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612) were intronic and 9% (n = 464) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant (P < 0.01) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences (P > 0.1) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total). CONCLUSIONS: The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait.


Subject(s)
Fertility/genetics , Gene Frequency , Genomics , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Animals , Base Sequence , Binding Sites , Cattle , MicroRNAs/metabolism , Reproducibility of Results , Transcription Factors/metabolism
12.
Reprod Fertil Dev ; 24(5): 715-22, 2012.
Article in English | MEDLINE | ID: mdl-22697121

ABSTRACT

Systemic progesterone affects the timing and duration of uterine endometrial gene and protein expression and has significant effects on conceptus development. The objective of the present study was to examine how changes in progesterone concentrations during the early luteal phase affect retinol-binding protein (RBP4) mRNA and protein concentrations in the uterus. Endometrial tissue and uterine flushings were recovered on Days 7 and 13 of the oestrous cycle in heifers with high, normal and low progesterone concentrations. RBP4 mRNA and protein concentrations were higher (P<0.05) on Day 13 compared with Day 7 in heifers with high and control progesterone concentrations. However, there was no difference in RBP4 protein concentrations between Days 7 and 13 in heifers with low progesterone (P>0.05). On Day 7, although heifers with low progesterone had lower RBP4 mRNA expression compared with controls (P<0.05) there was no difference in protein concentrations between treatment groups. On Day 13, RBP4 mRNA was 2-fold higher (P<0.001) in heifers with high and control progesterone compared with their low-progesterone counterparts and RBP4 protein concentrations were over 2-fold higher (P<0.001) in heifers with high compared to low progesterone. In conclusion, progesterone modulates uterine RBP4 mRNA and protein abundance in a time- and concentration-dependent manner.


Subject(s)
Cattle , Luteal Phase/blood , Progesterone/blood , Retinol-Binding Proteins, Plasma/genetics , Uterus/metabolism , Animals , Body Fluids/drug effects , Body Fluids/metabolism , Cattle/blood , Cattle/genetics , Cattle/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Luteal Phase/drug effects , Models, Theoretical , Osmolar Concentration , Progesterone/analysis , Progesterone/pharmacology , Retinol-Binding Proteins, Plasma/metabolism , Time Factors , Uterus/drug effects , Validation Studies as Topic
13.
BMC Genet ; 12: 4, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21214909

ABSTRACT

BACKGROUND: Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. RESULTS: SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues. CONCLUSIONS: Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses.


Subject(s)
Cattle/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Genomic Imprinting , Animals , Cattle/embryology , Cattle/growth & development , Epigenesis, Genetic , Fertility/genetics , Gene Expression Regulation , Gene Frequency , Milk , Polymorphism, Single Nucleotide , Reproduction/genetics
14.
J Hered ; 102(1): 94-101, 2011.
Article in English | MEDLINE | ID: mdl-20817761

ABSTRACT

Previous studies show that DNA sequence variation within the mammalian DLK1-DIO3 imprinted domain influences production traits in domestic livestock, most notably the ovine callipyge phenotype. We assessed genotype-phenotype associations between 7 single nucleotide polymorphisms (SNPs) within the orthologous bovine DLK1-DIO3 domain and performance traits in 848 progeny-tested Holstein-Friesian dairy sires. One SNP (MEG3_01) located proximal to the maternally expressed 3 (MEG3/Gtl2) gene was associated with milk yield, subcutaneous fat levels, and progeny carcass conformation (P ≤ 0.01) and also tended to be associated with milk fat and protein yield (P ≤ 0.10). A single SNP (CLPG_01) within the putative CLPG1 locus was associated with progeny carcass fat (P ≤ 0.05), whereas a single SNP (PEG11_01) located proximal to the paternally expressed 11 (PEG11/Rtl) gene was associated with progeny carcass weight (P ≤ 0.05). The MEG3_01 SNP together with an additional 2 SNPs (MEG8_01 and MEG8_02) located proximal to the putative maternally expressed 8 (MEG8/Rian) ortholog were associated (P ≤ 0.05) with perinatal mortality. Finally, one SNP (MEG3_03) was associated (P ≤ 0.05) with gestation length, whereas both the CLPG_01 and MEG8_01 SNPs also tended to be associated with calving interval (P ≤ 0.10). Linkage disequilibrium analysis suggests that some phenotypic associations observed at these loci are independent. To our knowledge, this is one of the first studies demonstrating associations between the bovine DLK1-DIO3 domain and milk, carcass, fertility and, health traits in cattle. This imprinted domain may serve as a potential target for future genetic selection strategies.


Subject(s)
Cattle/genetics , Genomic Imprinting , Milk/chemistry , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Amino Acid Sequence , Animals , Cluster Analysis , Female , Gene Expression , Genotype , Linkage Disequilibrium , Male , Molecular Sequence Data , Multigene Family , Phenotype , Sequence Analysis, DNA
15.
J Dairy Res ; 78(1): 1-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20822563

ABSTRACT

The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle. In this study we assessed genotype-phenotype associations between four single nucleotide polymorphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of performance traits related to milk production, animal growth and body size, fertility and progeny survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909 and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2 = 0·995), were associated with milk yield (P ≤ 0·01) and milk protein yield (P ≤ 0·05); the rs42196901 SNP was also associated (P ≤ 0·05) with milk fat yield. Associations (P ≤ 0·05) with milk fat percentage and milk protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively. The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass conformation (P ≤ 0·05), while an association (P ≤ 0·01) with progeny carcass weight was observed at the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and progeny survival. These findings support previous work which suggests that the IGF2 locus is an important biological regulator of milk production in dairy cattle and add to an accumulating body of research showing that imprinted genes influence many complex performance traits in cattle.


Subject(s)
Cattle/genetics , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Lactation/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Body Composition , Body Weight , Breeding , Cattle/physiology , Fats/analysis , Female , Fertility/genetics , Gene Frequency , Genotype , Milk/chemistry , Milk Proteins/analysis , Phenotype
16.
BMC Genet ; 11: 93, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20942903

ABSTRACT

BACKGROUND: Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). RESULTS: Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01). CONCLUSIONS: Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations.


Subject(s)
Cattle/genetics , Genomic Imprinting , Polymorphism, Single Nucleotide , Animals , Body Fat Distribution , Cattle/growth & development , Cattle/physiology , Milk
17.
Front Genet ; 10: 1386, 2019.
Article in English | MEDLINE | ID: mdl-32117424

ABSTRACT

Bovine tuberculosis is caused by infection with Mycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter M. bovis and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density genome-wide association study (GWAS) data, which revealed genomic regions associated with resilience to infection with M. bovis in cattle. Through integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.

18.
Front Genet ; 10: 927, 2019.
Article in English | MEDLINE | ID: mdl-31649720

ABSTRACT

The Galway sheep population is the only native Irish sheep breed and this livestock genetic resource is currently categorised as 'at-risk'. In the present study, comparative population genomics analyses of Galway sheep and other sheep populations of European origin were used to investigate the microevolution and recent genetic history of the breed. These analyses support the hypothesis that British Leicester sheep were used in the formation of the Galway. When compared to conventional and endangered breeds, the Galway breed was intermediate in effective population size, genomic inbreeding and runs of homozygosity. This indicates that, although the Galway breed is declining, it is still relatively genetically diverse and that conservation and management plans informed by genomic information may aid its recovery. The Galway breed also exhibited distinct genomic signatures of artificial or natural selection when compared to other breeds, which highlighted candidate genes that may be involved in production and health traits.

20.
Vet Immunol Immunopathol ; 184: 18-28, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28166928

ABSTRACT

Interleukin 8 is a proinflammatory chemokine involved in neutrophil recruitment and activation in response to infection and also in the resolution of inflammation. Our previous studies identified a number of genetic polymorphisms in the bovine IL8 promoter region which segregate into two haplotypes, with balanced frequencies in the Holstein-Friesian (HF). We subsequently showed that these haplotypes confer divergent IL8 activity both in vitro in mammary epithelial cells and in vivo in response to LPS. In this study, we hypothesised that the balanced frequency of IL8 haplotype in HF could be explained by divergent selection pressures acting on this locus. To address this hypothesis, an association study was carried out aiming to identify a putative link between the IL8 haplotype and somatic cell score (SCS) in 5746 Holstein-Friesian dairy cows. In addition, the basal and inducible promoter activity of the two IL8 haplotypes was characterised in bovine endometrial epithelial (BEND) cells and in monocyte-derived macrophages. Results showed a significant association between IL8 haplotype 2 (IL8-h2) with increased SCS (P<0.05). Functional analysis showed that the same haplotype was a more potent inducer of IL8 expression in BEND cells in response to LPS and TNFα stimulation. In contrast, co-transfection of the BEND cells with a DNA construct encoding a bovine herpesvirus 4 antigen, induced significantly higher IL8 expression from IL8-h1. The present study sheds light on the molecular mechanisms underlying selection for SCS and provides evidence that the balanced frequencies of the two IL8 haplotypes in HF cattle may occur as a result of opposing directional selection pressures of both bacterial and viral infection.


Subject(s)
Endometrium/physiology , Interleukin-8/genetics , Mammary Glands, Animal/physiology , Animals , Cattle , Endometrium/cytology , Female , Haplotypes/genetics , Haplotypes/physiology , Interleukin-8/physiology , Mammary Glands, Animal/cytology , Mastitis, Bovine/physiopathology , Polymorphism, Genetic/genetics , Polymorphism, Genetic/physiology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Real-Time Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL