Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Histopathology ; 82(6): 837-845, 2023 May.
Article in English | MEDLINE | ID: mdl-36645163

ABSTRACT

AIMS: There is strong evidence that cribriform morphology indicates a worse prognosis of prostatic adenocarcinoma. Our aim was to investigate its interobserver reproducibility in prostate needle biopsies. METHODS AND RESULTS: A panel of nine prostate pathology experts from five continents independently reviewed 304 digitised biopsies for cribriform cancer according to recent International Society of Urological Pathology criteria. The biopsies were collected from a series of 702 biopsies that were reviewed by one of the panellists for enrichment of high-grade cancer and potentially cribriform structures. A 2/3 consensus diagnosis of cribriform and noncribriform cancer was reached in 90% (272/304) of the biopsies with a mean kappa value of 0.56 (95% confidence interval 0.52-0.61). The prevalence of consensus cribriform cancers was estimated to 4%, 12%, 21%, and 20% of Gleason scores 7 (3 + 4), 7 (4 + 3), 8, and 9-10, respectively. More than two cribriform structures per level or a largest cribriform mass with ≥9 lumina or a diameter of ≥0.5 mm predicted a consensus diagnosis of cribriform cancer in 88% (70/80), 84% (87/103), and 90% (56/62), respectively, and noncribriform cancer in 3% (2/80), 5% (5/103), and 2% (1/62), respectively (all P < 0.01). CONCLUSION: Cribriform prostate cancer was seen in a minority of needle biopsies with high-grade cancer. Stringent diagnostic criteria enabled the identification of cribriform patterns and the generation of a large set of consensus cases for standardisation.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Reproducibility of Results , Biopsy, Needle , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Biopsy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Neoplasm Grading
2.
Bioinformatics ; 37(21): 3995-3997, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34358287

ABSTRACT

SUMMARY: Digital pathology enables applying computational methods, such as deep learning, in pathology for improved diagnostics and prognostics, but lack of interoperability between whole slide image formats of different scanner vendors is a challenge for algorithm developers. We present OpenPhi-Open PatHology Interface, an Application Programming Interface for seamless access to the iSyntax format used by the Philips Ultra Fast Scanner, the first digital pathology scanner approved by the United States Food and Drug Administration. OpenPhi is extensible and easily interfaced with existing vendor-neutral applications. AVAILABILITY AND IMPLEMENTATION: OpenPhi is implemented in Python and is available as open-source under the MIT license at: https://gitlab.com/BioimageInformaticsGroup/openphi. The Philips Software Development Kit is required and available at: https://www.openpathology.philips.com. OpenPhi version 1.1.1 is additionally provided as Supplementary Data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , United States
3.
Eur Urol Oncol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38789385

ABSTRACT

BACKGROUND AND OBJECTIVE: Image-based artificial intelligence (AI) methods have shown high accuracy in prostate cancer (PCa) detection. Their impact on patient outcomes and cost effectiveness in comparison to human pathologists remains unknown. Our aim was to evaluate the effectiveness and cost-effectiveness of AI-assisted pathology for PCa diagnosis in Sweden. METHODS: We modeled quadrennial prostate-specific antigen (PSA) screening for men between the ages of 50 and 74 yr over a lifetime horizon using a health care perspective. Men with PSA ≥3 ng/ml were referred for standard biopsy (SBx), for which cores were either examined via AI followed by a pathologist for AI-labeled positive cores, or a pathologist alone. The AI performance characteristics were estimated using an internal STHLM3 validation data set. Outcome measures included the number of tests, PCa incidence and mortality, overdiagnosis, quality-adjusted life years (QALYs), and the potential reduction in pathologist-evaluated biopsy cores if AI were used. Cost-effectiveness was assessed using the incremental cost-effectiveness ratio. KEY FINDINGS AND LIMITATIONS: In comparison to a pathologist alone, the AI-assisted workflow increased the number of PSA tests, SBx procedures, and PCa deaths by ≤0.03%, and slightly reduced PCa incidence and overdiagnosis. AI would reduce the proportion of biopsy cores evaluated by a pathologist by 80%. At a cost of €10 per case, the AI-assisted workflow would cost less and result in <0.001% lower QALYs in comparison to a pathologist alone. The results were sensitive to the AI cost. CONCLUSIONS AND CLINICAL IMPLICATIONS: According to our model, AI-assisted pathology would significantly decrease the workload of pathologists, would not affect patient quality of life, and would yield cost savings in Sweden when compared to a human pathologist alone. PATIENT SUMMARY: We compared outcomes for prostate cancer patients and relevant costs for two methods of assessing prostate biopsies in Sweden: (1) artificial intelligence (AI) technology and review of positive biopsies by a human pathologist; and (2) a human pathologist alone for all biopsies. We found that addition of AI would reduce the pathology workload and save money, and would not affect patient outcomes when compared to a human pathologist alone. The results suggest that adding AI to prostate pathology in Sweden would save costs.

4.
Nat Commun ; 13(1): 7761, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522311

ABSTRACT

Unreliable predictions can occur when an artificial intelligence (AI) system is presented with data it has not been exposed to during training. We demonstrate the use of conformal prediction to detect unreliable predictions, using histopathological diagnosis and grading of prostate biopsies as example. We digitized 7788 prostate biopsies from 1192 men in the STHLM3 diagnostic study, used for training, and 3059 biopsies from 676 men used for testing. With conformal prediction, 1 in 794 (0.1%) predictions is incorrect for cancer diagnosis (compared to 14 errors [2%] without conformal prediction) while 175 (22%) of the predictions are flagged as unreliable when the AI-system is presented with new data from the same lab and scanner that it was trained on. Conformal prediction could with small samples (N = 49 for external scanner, N = 10 for external lab and scanner, and N = 12 for external lab, scanner and pathology assessment) detect systematic differences in external data leading to worse predictive performance. The AI-system with conformal prediction commits 3 (2%) errors for cancer detection in cases of atypical prostate tissue compared to 44 (25%) without conformal prediction, while the system flags 143 (80%) unreliable predictions. We conclude that conformal prediction can increase patient safety of AI-systems.


Subject(s)
Artificial Intelligence , Neoplasms , Male , Humans , Uncertainty , Prostate , Biopsy
5.
Eur Urol Focus ; 7(4): 687-691, 2021 07.
Article in English | MEDLINE | ID: mdl-34393083

ABSTRACT

Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under- and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments. PATIENT SUMMARY: This mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms , Biopsy , Humans , Image Interpretation, Computer-Assisted , Male , Neoplasm Grading , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL