Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hum Mol Genet ; 25(16): 3446-3453, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27378692

ABSTRACT

Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the testis-determining gene, SRY Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g. WNT4); however, the genetic cause of the more common non-syndromic forms is unknown. Steroidogenic factor-1 (known as NR5A1) is a key regulator of reproductive development and function. Loss-of-function changes in NR5A1 in 46,XY individuals are associated with a spectrum of phenotypes in humans ranging from a lack of testis formation to male infertility. Mutations in NR5A1 in 46,XX women are associated with primary ovarian insufficiency, which includes a lack of ovary formation, primary and secondary amenorrhoea as well as early menopause. Here, we show that a specific recurrent heterozygous missense mutation (p.Arg92Trp) in the accessory DNA-binding region of NR5A1 is associated with variable degree of testis development in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans.


Subject(s)
DNA-Binding Proteins/genetics , Disorder of Sex Development, 46,XY/genetics , Primary Ovarian Insufficiency/genetics , Sexual Development/genetics , Steroidogenic Factor 1/genetics , Adult , Androgen-Insensitivity Syndrome/genetics , Androgen-Insensitivity Syndrome/pathology , Cell Lineage/genetics , Child , Disorder of Sex Development, 46,XY/pathology , Female , Gonads/growth & development , Gonads/pathology , Humans , Karyotype , Male , Mutation, Missense , Ovary/growth & development , Ovary/pathology , Pedigree , Primary Ovarian Insufficiency/pathology , Sex Determination Processes , Testis/growth & development , Testis/pathology
3.
Res Sq ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168160

ABSTRACT

Background: The utilization of genomic information to improve health outcomes is progressively becoming more common in clinical practice. Nonetheless, disparities persist in accessing genetic services among ethnic minorities, individuals with low socioeconomic status, and other vulnerable populations. The Rio Grande Valley at the Texas-Mexico border is predominantly Hispanic with a high poverty rate and an increased prevalence of birth defects, with very limited access to genetics services. The cost of a diagnosis is often times out of reach for these underserved families. Funded by the National Center for Advancing Translational Sciences (NCATS), Project GIVE (Genetic Inclusion by Virtual Evaluation) was launched in 2022 to shorten the time to diagnosis and alleviate healthcare inequities in this region, with the goal of improving pediatric health outcomes. Methods: Utilizing Consultagene, an innovative electronic health record (EHR) agnostic virtual telehealth and educational platform, we designed the study to recruit 100 children with rare diseases over a period of two years from this region, through peer-to-peer consultation and referral. Conclusions: Project GIVE study has allowed advanced genetic evaluation and delivery of genome sequencing through the virtual portal, effectively circumventing the recognized socioeconomic and other barriers within this population. This paper explores the successful community engagement process and implementation of an alternate genomics evaluation platform and testing approach, aiming to reduce the diagnostic journey for individuals with rare diseases residing in a medically underserved region.

4.
Diabetes ; 70(8): 1898-1909, 2021 08.
Article in English | MEDLINE | ID: mdl-34021044

ABSTRACT

When stable and near-normoglycemic, patients with "A-ß+" ketosis-prone diabetes (KPD) manifest accelerated leucine catabolism and blunted ketone oxidation, which may underlie their proclivity to develop diabetic ketoacidosis (DKA). To understand metabolic derangements in A-ß+ KPD patients during DKA, we compared serum metabolomics profiles of adults during acute hyperglycemic crises, without (n = 21) or with (n = 74) DKA, and healthy control subjects (n = 17). Based on 65 kDa GAD islet autoantibody status, C-peptide, and clinical features, 53 DKA patients were categorized as having KPD and 21 type 1 diabetes (T1D); 21 nonketotic patients were categorized as having type 2 diabetes (T2D). Patients with KPD and patients with T1D had higher counterregulatory hormones and lower insulin-to-glucagon ratio than patients with T2D and control subjects. Compared with patients withT2D and control subjects, patients with KPD and patients with T1D had lower free carnitine and higher long-chain acylcarnitines and acetylcarnitine (C2) but lower palmitoylcarnitine (C16)-to-C2 ratio; a positive relationship between C16 and C2 but negative relationship between carnitine and ß-hydroxybutyrate (BOHB); higher branched-chain amino acids (BCAAs) and their ketoacids but lower ketoisocaproate (KIC)-to-Leu, ketomethylvalerate (KMV)-to-Ile, ketoisovalerate (KIV)-to-Val, isovalerylcarnitine-to-KIC+KMV, propionylcarnitine-to-KIV+KMV, KIC+KMV-to-C2, and KIC-to-BOHB ratios; and lower glutamate and 3-methylhistidine. These data suggest that during DKA, patients with KPD resemble patients with T1D in having impaired BCAA catabolism and accelerated fatty acid flux to ketones-a reversal of their distinctive BCAA metabolic defect when stable. The natural history of A-ß+ KPD is marked by chronic but varying dysregulation of BCAA metabolism.


Subject(s)
Amino Acids, Branched-Chain/blood , Carnitine/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Diabetic Ketoacidosis/blood , Adult , Autoantibodies , Carnitine/analogs & derivatives , Female , Humans , Male , Metabolome , Metabolomics , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL