ABSTRACT
BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.
Subject(s)
BRCA1 Protein/genetics , Chromatin/enzymology , Fibroblasts/enzymology , Haploinsufficiency , Neoplasms/enzymology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals , BRCA2 Protein/genetics , Cell Line, Tumor , Chromatin/genetics , DNA Damage , Fanconi Anemia Complementation Group N Protein/genetics , Fanconi Anemia Complementation Group N Protein/metabolism , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/geneticsABSTRACT
53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
Subject(s)
DNA Repair , Multiprotein Complexes/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Animals , CRISPR-Cas Systems , Cell Line , DNA Breaks, Double-Stranded , DNA, Single-Stranded/genetics , Female , Genes, BRCA1 , Humans , Immunoglobulin Class Switching/genetics , Mice , Models, Biological , Multiprotein Complexes/chemistry , Multiprotein Complexes/deficiency , Multiprotein Complexes/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Telomere-Binding Proteins/metabolism , Tumor Suppressor Protein p53/deficiencyABSTRACT
DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.
Subject(s)
DNA End-Joining Repair , DNA Helicases/metabolism , Mammary Neoplasms, Experimental/enzymology , Animals , BRCA1 Protein/genetics , DNA Helicases/deficiency , DNA Helicases/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Feedback, Physiological , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA Interference , RecQ Helicases/genetics , RecQ Helicases/metabolism , S Phase , Time Factors , Transfection , Tumor Suppressor Proteins/geneticsABSTRACT
The newly identified shieldin complex, composed of SHLD1, SHLD2, SHLD3, and REV7, lies downstream of 53BP1 and acts to inhibit DNA resection and promote NHEJ. Here, we show that Shld2-/- mice have defective class switch recombination (CSR) and that loss of SHLD2 can suppress the embryonic lethality of a Brca1Δ11 mutation, highlighting its role as a key effector of 53BP1. Lymphocyte development and RAG1/2-mediated recombination were unaffected by SHLD2 deficiency. Interestingly, a significant fraction of Shld2-/- primary B-cells and 53BP1- and shieldin-deficient CH12F3-2 B-cells permanently lose expression of immunoglobulin upon induction of CSR; this population of Ig-negative cells is also seen in other NHEJ-deficient cells and to a much lesser extent in WT cells. This loss of Ig is due to recombination coupled with overactive resection and loss of coding exons in the downstream acceptor constant region. Collectively, these data show that SHLD2 is the key effector of 53BP1 and critical for CSR in vivo by suppressing large deletions within the Igh locus.
Subject(s)
DNA Breaks, Double-Stranded , Immunoglobulin Class Switching , Animals , Immunoglobulin Class Switching/genetics , MiceABSTRACT
DNA repair by homologous recombination is highly suppressed in G1 cells to ensure that mitotic recombination occurs solely between sister chromatids. Although many homologous recombination factors are cell-cycle regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2-BRCA2 to constrain BRCA2 function to the S/G2 phases in human cells. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein, in complex with cullin-3 (CUL3)-RBX1 (ref. 6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR-Cas9-based gene-targeting assay. We conclude that the mechanism prohibiting homologous recombination in G1 minimally consists of the suppression of DNA-end resection coupled with a multi-step block of the recruitment of BRCA2 to DNA damage sites that involves the inhibition of BRCA1-PALB2-BRCA2 complex assembly. We speculate that the ability to induce homologous recombination in G1 cells with defined factors could spur the development of gene-targeting applications in non-dividing cells.
Subject(s)
G1 Phase , Homologous Recombination , Amino Acid Sequence , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , CRISPR-Cas Systems/genetics , Carrier Proteins/metabolism , Cell Line , Cullin Proteins/metabolism , DNA/metabolism , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group N Protein , G2 Phase , Gene Targeting , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Rad51 Recombinase/metabolism , S Phase , Thiolester Hydrolases/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , UbiquitinationABSTRACT
DNA double-strand break (DSB) repair pathway choice is governed by the opposing activities of 53BP1 and BRCA1. 53BP1 stimulates nonhomologous end joining (NHEJ), whereas BRCA1 promotes end resection and homologous recombination (HR). Here we show that 53BP1 is an inhibitor of BRCA1 accumulation at DSB sites, specifically in the G1 phase of the cell cycle. ATM-dependent phosphorylation of 53BP1 physically recruits RIF1 to DSB sites, and we identify RIF1 as the critical effector of 53BP1 during DSB repair. Remarkably, RIF1 accumulation at DSB sites is strongly antagonized by BRCA1 and its interacting partner CtIP. Lastly, we show that depletion of RIF1 is able to restore end resection and RAD51 loading in BRCA1-depleted cells. This work therefore identifies a cell cycle-regulated circuit, underpinned by RIF1 and BRCA1, that governs DSB repair pathway choice to ensure that NHEJ dominates in G1 and HR is favored from S phase onward.
Subject(s)
BRCA1 Protein/genetics , Carrier Proteins/genetics , Cell Cycle/genetics , DNA Repair , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Telomere-Binding Proteins/genetics , BRCA1 Protein/metabolism , Binding Sites , Carrier Proteins/metabolism , DNA End-Joining Repair/genetics , Endodeoxyribonucleases , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , S Phase , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1ABSTRACT
Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibited E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.
Subject(s)
Cysteine Endopeptidases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitinated Proteins/metabolism , Amino Acid Substitution , Cell Line , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Deubiquitinating Enzymes , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Organisms, Genetically Modified , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination , Yeasts/genetics , Yeasts/growth & developmentABSTRACT
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.
Subject(s)
DNA Replication , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Recombination, Genetic , Stress, Physiological , Cell Survival , DNA Breaks, Double-Stranded , HeLa Cells , Humans , NF-kappa B/chemistry , Protein Binding , S Phase , Templates, GeneticABSTRACT
DNA double-strand breaks (DSBs) pose a potent threat to genome integrity. These lesions also contribute to the efficacy of radiotherapy and many cancer chemotherapeutics. DSBs elicit a signalling cascade that modifies the chromatin surrounding the break, first by ATM-dependent phosphorylation and then by RNF8-, RNF168- and BRCA1-dependent regulatory ubiquitination. Here we report that OTUB1, a deubiquitinating enzyme, is an inhibitor of DSB-induced chromatin ubiquitination. Surprisingly, we found that OTUB1 suppresses RNF168-dependent poly-ubiquitination independently of its catalytic activity. OTUB1 does so by binding to and inhibiting UBC13 (also known as UBE2N), the cognate E2 enzyme for RNF168. This unusual mode of regulation is unlikely to be limited to UBC13 because analysis of OTUB1-associated proteins revealed that OTUB1 binds to E2s of the UBE2D and UBE2E subfamilies. Finally, OTUB1 depletion mitigates the DSB repair defect associated with defective ATM signalling, indicating that pharmacological targeting of the OTUB1-UBC13 interaction might enhance the DNA damage response.
Subject(s)
Chromatin/metabolism , Cysteine Endopeptidases/metabolism , DNA Breaks, Double-Stranded , Ubiquitination/physiology , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Chromatin/chemistry , Cysteine Endopeptidases/deficiency , Cysteine Endopeptidases/genetics , DNA Repair/physiology , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Deubiquitinating Enzymes , Humans , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolismABSTRACT
The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.
Subject(s)
DNA Repair , Osteochondrodysplasias , Humans , Mutation/genetics , NIMA-Related Kinase 1/genetics , Osteochondrodysplasias/genetics , PhosphorylationABSTRACT
BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.
Subject(s)
Neoplasms , Synthetic Lethal Mutations , Carrier Proteins/genetics , Chromosomal Instability , DNA , DNA-Binding Proteins/metabolism , Genomic Instability/genetics , Homologous Recombination , Humans , Nuclear Proteins/geneticsABSTRACT
Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR). However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ). We report the discovery of a genetically encoded inhibitor of 53BP1 that increases the efficiency of HDR-dependent genome editing in human and mouse cells. 53BP1 is a key regulator of DSB repair pathway choice in eukaryotic cells and functions to favor NHEJ over HDR by suppressing end resection, which is the rate-limiting step in the initiation of HDR. We screened an existing combinatorial library of engineered ubiquitin variants for inhibitors of 53BP1. Expression of one variant, named i53 (inhibitor of 53BP1), in human and mouse cells, blocked accumulation of 53BP1 at sites of DNA damage and improved gene targeting and chromosomal gene conversion with either double-stranded DNA or single-stranded oligonucleotide donors by up to 5.6-fold. Inhibition of 53BP1 is a robust method to increase efficiency of HDR-based precise genome editing.