Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
J Pept Sci ; 28(5): e3382, 2022 May.
Article in English | MEDLINE | ID: mdl-34859535

ABSTRACT

Disintegrins comprise a family of small proteins that bind to and alter the physiological function of integrins, especially integrins that mediate platelet aggregation in blood. Here, we report a lysine-glycine-aspartic acid (KGD) disintegrin-like motif present in a 15-amino acid residue peptide identified in a cDNA library of the amphibian Hypsiboas punctatus skin. The original peptide sequence was used as a template from which five new analogs were designed, chemically synthesized by solid phase, and tested for disintegrin activity and tridimensional structural studies using NMR spectroscopy. The original amphibian peptide had no effect on integrin-mediated responses. Nevertheless, derived peptide analogs inhibited integrin-mediated platelet function, including platelet spreading on fibrinogen.


Subject(s)
Disintegrins , Peptides , Amphibians/genetics , Amphibians/metabolism , Animals , DNA, Complementary/genetics , Disintegrins/chemistry , Disintegrins/genetics , Disintegrins/pharmacology , Peptides/chemistry , Peptides/genetics , Peptides/pharmacology , Platelet Aggregation/physiology
2.
Proteomics ; 19(13): e1900082, 2019 07.
Article in English | MEDLINE | ID: mdl-31050381

ABSTRACT

Fully sequenced genomes of Xanthomonas campestris pv. campestris (Xcc) strains are reported. However, intra-pathovar differences are still intriguing and far from clear. In this work, the contrasting virulence between two isolates of Xcc - Xcc51 (more virulent) and XccY21 (less virulent) is evaluated by determining their pan proteome profiles. The bacteria are grown in NYG and XVM1 (optimal for induction of hrp regulon) broths and collected at the max-exponential growth phase. Shotgun proteomics reveals a total of 329 proteins when Xcc isolates are grown in XVM1. A comparison of both profiles reveals 47 proteins with significant abundance fluctuations, out of which, 39 show an increased abundance in Xcc51 and are mainly involved in virulence/adaptation mechanisms, genetic information processing, and membrane receptor/iron transport systems, such as BfeA, BtuB, Cap, Clp, Dcp, FyuA, GroEs, HpaG, Tig, and OmpP6. Several differential proteins are further analyzed by qRT-PCR, which reveals a similar expression pattern to the protein abundance. The data shed light on the complex Xcc pathogenicity mechanisms and point out a set of proteins related to the higher virulence of Xcc51. This information is essential for the development of more efficient strategies aiming at the control of black rot disease.


Subject(s)
Bacterial Proteins/analysis , Proteome/analysis , Virulence Factors/analysis , Xanthomonas campestris/pathogenicity , Bacterial Proteins/genetics , Culture Media/chemistry , Gene Expression Profiling , Gene Expression Regulation, Bacterial/genetics , Proteome/genetics , Virulence/genetics , Virulence Factors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/isolation & purification
3.
Lancet Oncol ; 18(11): 1467-1482, 2017 11.
Article in English | MEDLINE | ID: mdl-28958504

ABSTRACT

BACKGROUND: Rilotumumab is a fully human monoclonal antibody that selectively targets the ligand of the MET receptor, hepatocyte growth factor (HGF). We aimed to assess the efficacy, safety, and pharmacokinetics of rilotumumab combined with epirubicin, cisplatin, and capecitabine, and to assess potential biomarkers, in patients with advanced MET-positive gastric or gastro-oesophageal junction adenocarcinoma. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 study was done at 152 centres in 27 countries. We recruited adults (aged ≥18 years) with unresectable locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma, an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, MET-positive tumours (≥25% of tumour cells with membrane staining of ≥1+ staining intensity), and evaluable disease, who had not received previous systemic therapy. Eligible patients were randomly assigned (1:1) via a computerised voice response system to receive rilotumumab 15 mg/kg intravenously or placebo in combination with open-label chemotherapy (epirubicin 50 mg/m2 intravenously; cisplatin 60 mg/m2 intravenously; capecitabine 625 mg/m2 orally twice daily) in 21-day cycles for up to ten cycles. After completion of chemotherapy, patients continued to receive rilotumumab or placebo monotherapy until disease progression, intolerability, withdrawal of consent, or study termination. Randomisation was stratified by disease extent and ECOG performance status. Both patients and physicians were masked to study treatment assignment. The primary endpoint was overall survival, analysed by intention to treat. We report the final analysis. This study is registered with ClinicalTrials.gov, number NCT01697072. FINDINGS: Between Nov 7, 2012, and Nov 21, 2014, 609 patients were randomly assigned to rilotumumab plus epirubicin, cisplatin, and capecitabine (rilotumumab group; n=304) or placebo plus epirubicin, cisplatin, and capecitabine (placebo group; n=305). Study treatment was stopped early after an independent data monitoring committee found a higher number of deaths in the rilotumumab group than in the placebo group; all patients in the rilotumumab group subsequently discontinued all study treatment. Median follow-up was 7·7 months (IQR 3·6-12·0) for patients in the rilotumumab group and 9·4 months (5·3-13·1) for patients in the placebo group. Median overall survival was 8·8 months (95% CI 7·7-10·2) in the rilotumumab group compared with 10·7 months (9·6-12·4) in the placebo group (stratified hazard ratio 1·34, 95% CI 1·10-1·63; p=0·003). The most common grade 3 or worse adverse events in the rilotumumab and placebo groups were neutropenia (86 [29%] of 298 patients vs 97 [32%] of 299 patients), anaemia (37 [12%] vs 43 [14%]), and fatigue (30 [10%] vs 35 [12%]). The frequency of serious adverse events was similar in the rilotumumab and placebo groups (142 [48%] vs 149 [50%]). More deaths due to adverse events occurred in the rilotumumab group than the placebo group (42 [14%] vs 31 [10%]). In the rilotumumab group, 33 (11%) of 298 patients had fatal adverse events due to disease progression, and nine (3%) had fatal events not due to disease progression. In the placebo group, 23 (8%) of 299 patients had fatal adverse events due to disease progression, and eight (3%) had fatal events not due to disease progression. INTERPRETATION: Ligand-blocking inhibition of the MET pathway with rilotumumab is not effective in improving clinical outcomes in patients with MET-positive gastric or gastro-oesophageal adenocarcinoma. FUNDING: Amgen.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Adult , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Capecitabine/administration & dosage , Capecitabine/adverse effects , Cisplatin/administration & dosage , Cisplatin/adverse effects , Disease-Free Survival , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Epirubicin/administration & dosage , Epirubicin/adverse effects , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophagogastric Junction/pathology , Humans , Internationality , Kaplan-Meier Estimate , Middle Aged , Prognosis , Proportional Hazards Models , Proto-Oncogene Proteins c-met/drug effects , Proto-Oncogene Proteins c-met/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Survival Analysis , Treatment Outcome
4.
Proteomics ; 17(12)2017 Jun.
Article in English | MEDLINE | ID: mdl-28471538

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot, a highly destructive disease that affects all brassicas. This work aimed to study the interaction Xcc-Brassica oleracea using an in vivo system in an attempt to identify proteins involved in pathogenicity. We used label-free shotgun 2D-nanoUPLC/MSE to analyze Xcc proteins in three conditions: in the interaction with susceptible (REK) and resistant (REU) plants and in culture medium (control condition). A model of Xcc-susceptible host interaction is proposed and shows that Xcc increases the abundance of several crucial proteins for infection and cell protection. In this study, we also confirmed the differential expression by qPCR analysis of selected genes. This is the first report showing a large-scale identification of proteins in an in vivo host plant condition. Considering that most studies involving phytopathogens are in vitro (growth in culture medium or in plant extract), this work contributes with relevant information related to the plant-pathogen interaction in planta.


Subject(s)
Bacterial Proteins/metabolism , Brassica/metabolism , Brassica/microbiology , Virulence Factors/metabolism , Xanthomonas campestris/pathogenicity , Bacterial Proteins/genetics , Brassica/growth & development , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/microbiology , Proteome/metabolism , Virulence Factors/genetics
5.
Plant Biotechnol J ; 13(7): 884-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25572960

ABSTRACT

There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 µg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.


Subject(s)
Bacterial Proteins/biosynthesis , Carrier Proteins/biosynthesis , Glycine max/genetics , Protein Engineering , Seeds/genetics , Anti-HIV Agents , Bacterial Proteins/genetics , Carrier Proteins/genetics , Seeds/metabolism , Glycine max/metabolism
6.
Anal Bioanal Chem ; 406(12): 2873-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24652150

ABSTRACT

Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.


Subject(s)
Fatty Acids/chemistry , Glycine max/chemistry , Plants, Genetically Modified/chemistry , Seeds/chemistry , Metabolic Engineering , Plants, Genetically Modified/genetics , Seeds/genetics , Soybean Oil/chemistry , Soybean Oil/genetics , Soybean Oil/metabolism , Glycine max/genetics
7.
Biochim Biophys Acta Gen Subj ; 1867(1): 130265, 2023 01.
Article in English | MEDLINE | ID: mdl-36280021

ABSTRACT

BACKGROUND: Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some ß-sheets. METHODS: The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of ß-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS: Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a ß-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS: Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE: This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.


Subject(s)
Anti-Infective Agents , Escherichia coli , Humans , Escherichia coli/metabolism , Antimicrobial Peptides , Lipopolysaccharides/pharmacology , Proteome , Gram-Negative Bacteria/metabolism , Peptides/chemistry
8.
BMC Biotechnol ; 12: 82, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23126227

ABSTRACT

BACKGROUND: Recombinant DNA technology has been extensively employed to generate a variety of products from genetically modified organisms (GMOs) over the last decade, and the development of technologies capable of analyzing these products is crucial to understanding gene expression patterns. Liquid chromatography coupled with mass spectrometry is a powerful tool for analyzing protein contents and possible expression modifications in GMOs. Specifically, the NanoUPLC-MSE technique provides rapid protein analyses of complex mixtures with supported steps for high sample throughput, identification and quantization using low sample quantities with outstanding repeatability. Here, we present an assessment of the peptide and protein identification and quantification of soybean seed EMBRAPA BR16 cultivar contents using NanoUPLC-MSE and provide a comparison to the theoretical tryptic digestion of soybean sequences from Uniprot database. RESULTS: The NanoUPLC-MSE peptide analysis resulted in 3,400 identified peptides, 58% of which were identified to have no miscleavages. The experiment revealed that 13% of the peptides underwent in-source fragmentation, and 82% of the peptides were identified with a mass measurement accuracy of less than 5 ppm. More than 75% of the identified proteins have at least 10 matched peptides, 88% of the identified proteins have greater than 30% of coverage, and 87% of the identified proteins occur in all four replicates. 78% of the identified proteins correspond to all glycinin and beta-conglycinin chains.The theoretical Uniprot peptide database has 723,749 entries, and 548,336 peptides have molecular weights of greater than 500 Da. Seed proteins represent 0.86% of the protein database entries. At the peptide level, trypsin-digested seed proteins represent only 0.3% of the theoretical Uniprot peptide database. A total of 22% of all database peptides have a pI value of less than 5, and 25% of them have a pI value between 5 and 8. Based on the detection range of typical NanoUPLC-MSE experiments, i.e., 500 to 5000 Da, 64 proteins will not be identified. CONCLUSIONS: NanoUPLC-MSE experiments provide good protein coverage within a peptide error of 5 ppm and a wide MW detection range from 500 to 5000 Da. A second digestion enzyme should be used depending on the tissue or proteins to be analyzed. In the case of seed tissue, trypsin protein digestion results offer good databank coverage. The Uniprot database has many duplicate entries that may result in false protein homolog associations when using NanoUPLC-MSE analysis. The proteomic profile of the EMBRAPA BR-16 seed lacks certain described proteins relative to the profiles of transgenic soybeans reported in other works.


Subject(s)
Databases, Factual , Glycine max/metabolism , Proteomics , Chromatography, High Pressure Liquid , Mass Spectrometry , Nanotechnology , Peptides/analysis , Seeds/metabolism , Soybean Proteins/metabolism
9.
Transgenic Res ; 20(4): 841-55, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21069460

ABSTRACT

The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a ß-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).


Subject(s)
Factor IX/metabolism , Glycine max/metabolism , Plants, Genetically Modified/metabolism , Recombinant Proteins/metabolism , Amino Acid Sequence , Antigens, Plant/genetics , Blood Coagulation/drug effects , Factor IX/genetics , Factor IX/pharmacology , Globulins/genetics , Humans , Molecular Sequence Data , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic , Protein Sorting Signals/genetics , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Seed Storage Proteins/genetics , Seeds/genetics , Seeds/metabolism , Soybean Proteins/genetics , Glycine max/genetics
10.
Transgenic Res ; 20(4): 811-26, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21069461

ABSTRACT

We produced human growth hormone (hGH), a protein that stimulates growth and cell reproduction, in genetically engineered soybean [Glycine max (L.) Merrill] seeds. Utilising the alpha prime (α') subunit of ß-conglycinin tissue-specific promoter from soybean and the α-Coixin signal peptide from Coix lacryma-jobi, we obtained transgenic soybean lines that expressed the mature form of hGH in their seeds. Expression levels of bioactive hGH up to 2.9% of the total soluble seed protein content (corresponding to approximately 9 g kg(-1)) were measured in mature dry soybean seeds. The results of ultrastructural immunocytochemistry assays indicated that the recombinant hGH in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Specific bioassays demonstrated that the hGH expressed in the soybean seeds was fully active. The recombinant hGH protein sequence was confirmed by mass spectrometry characterisation. These results demonstrate that the utilisation of tissue-specific regulatory sequences is an attractive and viable option for achieving high-yield production of recombinant proteins in stable transgenic soybean seeds.


Subject(s)
Glycine max/genetics , Human Growth Hormone/biosynthesis , Plants, Genetically Modified/genetics , Recombinant Proteins/biosynthesis , Seeds/genetics , Amino Acid Sequence , Antigens, Plant/genetics , Globulins/genetics , Human Growth Hormone/genetics , Humans , Molecular Sequence Data , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Protein Sorting Signals/genetics , Recombinant Proteins/genetics , Seed Storage Proteins/genetics , Seeds/metabolism , Soybean Proteins/genetics , Glycine max/metabolism , Vacuoles/metabolism
11.
J Sep Sci ; 34(19): 2618-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21898799

ABSTRACT

The use of mass spectrometry to identify recombinant proteins that are expressed in total soluble proteins (TSPs) from plant extracts is necessary to accelerate further processing steps. For example, the method consists of TSP sample preparation and trypsin digestion prior to the preliminary characterization using nanoUPLC-MS(E) analysis of the recombinant proteins that are expressed in TSP samples of transgenic soybean seeds. A TSP sample as small as 50 µg can be effectively analyzed. In this study, transgenic soybean seeds that expressed recombinant cancer testis antigen (CTAG) were used. The procedure covered 30% of the protein sequence and was quantified at 0.26 ng, which corresponded to 0.1% of the TSP sample. A comparative proteomic profile was generated by the comparison of a negative control and sample that showed a unique expression pattern of CTAG in a transgenic line. The experimental data from the TSP extraction, sample preparation and data analysis are discussed herein.


Subject(s)
Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Chromatography, High Pressure Liquid/methods , Glycine max/chemistry , Mass Spectrometry/methods , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nanotechnology/methods , Plants, Genetically Modified/chemistry , Amino Acid Sequence , Antigens, Neoplasm/metabolism , Humans , Membrane Proteins/metabolism , Molecular Sequence Data , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Glycine max/genetics , Glycine max/metabolism
12.
Macromol Mater Eng ; 306(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-34539237

ABSTRACT

In order to better understand the relationship between Flagelliform (Flag) spider silk molecular structural organization and the mechanisms of fiber assembly, it was designed and produced the Nephilengys cruentata Flag spidroin analogue rNcFlag2222. The recombinant proteins are composed by the elastic repetitive glycine-rich motifs (GPGGX/GGX) and the spacer region, rich in hydrophilic charged amino acids, present at the native silk spidroin. Using different approaches for nanomolecular protein analysis, the structural data of rNcFlag2222 recombinant proteins were compared in its fibrillar and in its fully solvated states. Based on the results was possible to identify the molecular structural dynamics of NcFlag2222 prior to and after fiber formation. Overal rNcFlag2222 shows a mixture of semiflexible and rigid conformations, characterized mostly by the presence of PPII, ß-turn and ß-sheet. These results agree with previous studies and bring insights about the molecular mechanisms that might driven Flag silk fibers assembly and elastomeric behavior.

13.
Clin Cancer Res ; 27(1): 78-86, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32873572

ABSTRACT

PURPOSE: Patients with advanced renal cell carcinoma with sarcomatoid features (sRCC) have poor prognoses and suboptimal outcomes with targeted therapy. This post hoc analysis of the phase III CheckMate 214 trial analyzed the efficacy of nivolumab plus ipilimumab (NIVO+IPI) versus sunitinib in patients with sRCC. PATIENTS AND METHODS: Patients with sRCC were identified via independent central pathology review of archival tumor tissue or histologic classification per local pathology report. Patients were randomized 1:1 to receive nivolumab (3 mg/kg) plus ipilimumab (1 mg/kg) every 3 weeks (four doses) then nivolumab 3 mg/kg every 2 weeks, or sunitinib 50 mg orally every day (4 weeks; 6-week cycles). Outcomes in patients with sRCC were not prespecified. Endpoints in patients with sRCC and International Metastatic Renal Cell Carcinoma Database Consortium intermediate/poor-risk disease included overall survival (OS), progression-free survival (PFS) per independent radiology review, and objective response rate (ORR) per RECIST v1.1. Safety outcomes used descriptive statistics. RESULTS: Of 1,096 randomized patients in CheckMate 214, 139 patients with sRCC and intermediate/poor-risk disease and six with favorable-risk disease were identified. With 42 months' minimum follow-up in patients with sRCC and intermediate/poor-risk disease, median OS [95% confidence interval (CI)] favored NIVO+IPI [not reached (NR) (25.2-not estimable [NE]); n = 74] versus sunitinib [14.2 months (9.3-22.9); n = 65; HR, 0.45 (95% CI, 0.3-0.7; P = 0.0004)]; PFS benefits with NIVO+IPI were similarly observed [median 26.5 vs. 5.1 months; HR, 0.54 (95% CI, 0.33-0.86; P = 0.0093)]. Confirmed ORR was 60.8% with NIVO+IPI versus 23.1% with sunitinib, with complete response rates of 18.9% versus 3.1%, respectively. No new safety signals emerged. CONCLUSIONS: NIVO+IPI showed unprecedented long-term survival, response, and complete response benefits versus sunitinib in previously untreated patients with sRCC and intermediate/poor-risk disease, supporting the use of first-line NIVO+IPI for this population.See related commentary by Hwang et al., p. 5.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Renal Cell/drug therapy , Hippo Signaling Pathway , Humans , Immunotherapy , Ipilimumab/adverse effects , Kidney Neoplasms/drug therapy , Nivolumab/adverse effects , Protein Serine-Threonine Kinases , Sunitinib/therapeutic use
14.
Ecancermedicalscience ; 15: 1195, 2021.
Article in English | MEDLINE | ID: mdl-33889204

ABSTRACT

Oesophageal cancer is among the ten most common types of cancer worldwide. More than 80% of the cases and deaths related to the disease occur in developing countries. Local socio-economic, epidemiologic and healthcare particularities led us to create a Brazilian guideline for the management of oesophageal and oesophagogastric junction (OGJ) carcinomas. The Brazilian Group of Gastrointestinal Tumours invited 50 physicians with different backgrounds, including radiology, pathology, endoscopy, nuclear medicine, genetics, oncological surgery, radiotherapy and clinical oncology, to collaborate. This document was prepared based on an extensive review of topics related to heredity, diagnosis, staging, pathology, endoscopy, surgery, radiation, systemic therapy (including checkpoint inhibitors) and follow-up, which was followed by presentation, discussion and voting by the panel members. It provides updated evidence-based recommendations to guide clinical management of oesophageal and OGJ carcinomas in several scenarios and clinical settings.

15.
J Proteomics ; 217: 103690, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32068185

ABSTRACT

Arachis stenosperma is a wild peanut relative exclusive to South America that harbors high levels of resistance against several pathogens, including the peanut root-knot nematode (RKN) Meloidogyne arenaria. In this study, a proteomic survey of A. stenosperma-M. arenaria interaction using 2-DE and LC-MS/MS identified approximately 1400 proteins, out of which 222 were differentially abundant (DAPs) when RKN inoculated root samples were compared to the control. Most of these DAPs were assigned to functional categories related to plant responses to pathogens including stress, glycolysis, redox and tricarboxylic acid cycle. The comparison between the transcriptome (RNA-Seq) and proteome expression changes, showed that almost 55% of these DAPs encode genes with a similar expression trend to their protein counterparts. Most of these genes were induced during RKN infection and some were related to plant defense, such as MLP-like protein 34 (MLP34), cinnamoyl-CoA reductase 1 (CCR1), enolase (ENO), alcohol dehydrogenase (ADH) and eukaryotic translation initiation factor 5A (eIF5A). The overexpression of AsMLP34 in Agrobacterium rhizogenes transgenic roots in a susceptible peanut cultivar showed a reduction in the number of M. arenaria galls and egg masses, indicating that AsMLP34 is a promising candidate gene to be exploited in breeding programs for RKN control in peanut. SIGNIFICANCE: The use of an integrated approach to compare plant-nematode transcriptional and translational data enabled the identification of a new gene, AsMLP34, for Meloidogyne resistance.


Subject(s)
Tylenchoidea , Agrobacterium , Animals , Arachis/genetics , Chromatography, Liquid , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Roots , Proteomics , South America , Tandem Mass Spectrometry
16.
Commun Biol ; 3(1): 255, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444777

ABSTRACT

Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells. The switches were composed of plasmids designed to flip two different genetic parts driven by serine integrases. Cell-based assays were evaluated by measurement of EGFP fluorescence and by molecular analysis of attL/attR sites formation after integrase functionality. Our results demonstrate that all the integrases were capable of inverting the targeted DNA sequences, exhibiting distinct performances based on the cell type or the switchable genetic sequence. These results should support the development of tunable genetic circuits to regulate eukaryotic gene expression.


Subject(s)
Arabidopsis/enzymology , Fibroblasts/enzymology , Integrases/genetics , Plasmids/genetics , Protoplasts/enzymology , Recombination, Genetic , Serine/genetics , Animals , Cattle , Humans , Integrases/metabolism , Leukocytes, Mononuclear/enzymology , Promoter Regions, Genetic , Serine/metabolism
17.
Ecancermedicalscience ; 14: 1126, 2020.
Article in English | MEDLINE | ID: mdl-33209117

ABSTRACT

Gastric cancer is among the ten most common types of cancer worldwide. Most cases and deaths related to the disease occur in developing countries. Local socio-economic, epidemiologic and healthcare particularities led us to create a Brazilian guideline for the management of gastric carcinomas. The Brazilian Group of Gastrointestinal Tumors (GTG) invited 50 physicians with different backgrounds, including radiology, pathology, endoscopy, nuclear medicine, genetics, oncological surgery, radiotherapy and clinical oncology, to collaborate. This document was prepared based on an extensive review of topics related to heredity, diagnosis, staging, pathology, endoscopy, surgery, radiation, systemic therapy and follow-up, which was followed by presentation, discussion, and voting by the panel members. It provides updated evidence-based recommendations to guide clinical management of gastric carcinomas in several scenarios and clinical settings.

18.
Toxicon ; 167: 10-19, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31173792

ABSTRACT

The present work reports the isolation, characterization and the complete sequence of a phospholipase A2 (PLA2) present in the skin secretion of Pithecopus azureus. Among several peptides and small proteins previously described by our group from some species belonging to this amphibian genus (formerly named Phyllomedusa), a 15 kDa N-glycosylated protein showing PLA2 activity was purified, assayed, sequenced and named Pa-PLA2. The Pithecopus azureus skin phospholipase A2 polypeptide chain is composed by 125 amino acid residues linked by seven disulfide bonds and two N-glycosylated sites (N67 and N108). The Pa-PLA2 enzymatic activity was qualitatively evaluated and compared to classical viperid PLA2 showing that both, native and deglycosylated Pa-PLA2 forms, are catalytically functional. The tridimensional molecular model of Pa-PLA2 indicates that the observed glycan moieties are suggestively placed far from the active site of that enzyme and therefore having little or no significant role on the direct interaction of the Pa-PLA2 catalytic pocket and its substrates.


Subject(s)
Anura , Phospholipases A2/chemistry , Amino Acid Sequence , Animals , Chemical Fractionation , Chromatography, Liquid , Models, Molecular , Phospholipases A2/isolation & purification , Sequence Analysis, Protein , Tandem Mass Spectrometry
19.
PLoS One ; 14(8): e0220656, 2019.
Article in English | MEDLINE | ID: mdl-31386688

ABSTRACT

Following the treads of our previous works on the unveiling of bioactive peptides encrypted in plant proteins from diverse species, the present manuscript reports the occurrence of four proof-of-concept intragenic antimicrobial peptides in human proteins, named Hs IAPs. These IAPs were prospected using the software Kamal, synthesized by solid phase chemistry, and had their interactions with model phospholipid vesicles investigated by differential scanning calorimetry and circular dichroism. Their antimicrobial activity against bacteria, yeasts and filamentous fungi was determined, along with their cytotoxicity towards erythrocytes. Our data demonstrates that Hs IAPs are capable to bind model membranes while attaining α-helical structure, and to inhibit the growth of microorganisms at concentrations as low as 1µM. Hs02, a novel sixteen residue long internal peptide (KWAVRIIRKFIKGFIS-NH2) derived from the unconventional myosin 1h protein, was further investigated in its capacity to inhibit lipopolysaccharide-induced release of TNF-α in murine macrophages. Hs02 presented potent anti-inflammatory activity, inhibiting the release of TNF-α in LPS-primed cells at the lowest assayed concentration, 0.1 µM. A three-dimensional solution structure of Hs02 bound to DPC micelles was determined by Nuclear Magnetic Resonance. Our work exemplifies how the human genome can be mined for molecules with biotechnological potential in human health and demonstrates that IAPs are actual alternatives to antimicrobial peptides as pharmaceutical agents or in their many other putative applications.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Peptides/pharmacology , Animals , Erythrocytes/drug effects , Humans , Liposomes/metabolism , Macrophages/metabolism , Mice , Micelles , Peptides/analysis , Peptides/chemical synthesis , Peptides/metabolism , Protein Conformation, alpha-Helical , Proteins/chemistry , Solid-Phase Synthesis Techniques , Tumor Necrosis Factor-alpha/metabolism
20.
Proteins ; 73(3): 719-29, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18498107

ABSTRACT

Plant defensins are small cysteine-rich proteins commonly synthesized in plants, encoded by large multigene families. Most plant defensins that have been characterized to date show potent antifungal and/or bactericidal activities. This report describes VuD1, an unusual defensin that is able to inhibit insect-pest alpha-amylases. VuD1 was cloned from cowpea (Vigna unguiculata) seeds and expressed in a heterologous system. Inhibitory enzyme assays showed that VuD1 efficiently inhibits alpha-amylases from the weevils Acanthoscelides obtectus and Zabrotes subfasciatus, caused low inhibition toward mammalian enzymes and was unable to inhibit the alpha-amylases from Callosobruchus maculatus and Aspergillus fumigatus. To shed some light over the mechanism of action of VuD1, molecular modeling analyses were performed, revealing that the N-terminus of the molecule is responsible for binding with the active site of weevil enzymes. Moreover, models of VuD1 and mammalian enzymes were also generated to elucidate the specificity mechanisms. The data presented herein suggests that this defensin has potential application in the development of transgenic plants for insect pest control.


Subject(s)
Defensins/metabolism , Enzyme Inhibitors/metabolism , Fabaceae/metabolism , Plant Proteins/metabolism , alpha-Amylases/antagonists & inhibitors , Amino Acid Sequence , Animals , Base Sequence , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA, Plant/genetics , Defensins/chemistry , Defensins/genetics , Defensins/isolation & purification , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Insecta/enzymology , Models, Molecular , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Seeds/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL