Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26909576

ABSTRACT

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/classification , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Histone Demethylases/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Humans , Mice , Nuclear Proteins/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Cytoplasmic and Nuclear/genetics , Survival Analysis , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Zebrafish Proteins
2.
Nature ; 554(7693): 470-472, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32094929
3.
Nature ; 554(7693): 470-472, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29469130
4.
Annu Rev Physiol ; 77: 229-49, 2015.
Article in English | MEDLINE | ID: mdl-25386992

ABSTRACT

Pancreatitis is caused by inflammatory injury to the exocrine pancreas, from which both humans and animal models appear to recover via regeneration of digestive enzyme-producing acinar cells. This regenerative process involves transient phases of inflammation, metaplasia, and redifferentiation, driven by cell-cell interactions between acinar cells, leukocytes, and resident fibroblasts. The NFκB signaling pathway is a critical determinant of pancreatic inflammation and metaplasia, whereas a number of developmental signals and transcription factors are devoted to promoting acinar redifferentiation after injury. Imbalances between these proinflammatory and prodifferentiation pathways contribute to chronic pancreatitis, characterized by persistent inflammation, fibrosis, and acinar dedifferentiation. Loss of acinar cell differentiation also drives pancreatic cancer initiation, providing a mechanistic link between pancreatitis and cancer risk. Unraveling the molecular bases of exocrine regeneration may identify new therapeutic targets for treatment and prevention of both of these deadly diseases.


Subject(s)
Acinar Cells/cytology , Acinar Cells/physiology , Pancreas, Exocrine/physiology , Regeneration/physiology , Animals , Cell Differentiation/physiology , Disease Models, Animal , Humans , Pancreas, Exocrine/cytology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/physiopathology , Pancreatitis/pathology , Pancreatitis/physiopathology , Signal Transduction/physiology
5.
Development ; 140(24): 4870-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24198274

ABSTRACT

The formation of epithelial tubes underlies the development of diverse organs. In the skin, hair follicles resemble tube-like structures with lumens that are generated through poorly understood cellular rearrangements. Here, we show that creation of the hair follicle lumen is mediated by early outward movement of keratinocytes from within the cores of developing hair buds. These migratory keratinocytes express keratin 79 (K79) and stream out of the hair germ and into the epidermis prior to lumen formation in the embryo. Remarkably, this process is recapitulated during hair regeneration in the adult mouse, when K79(+) cells migrate out of the reactivated secondary hair germ prior to formation of a new hair canal. During homeostasis, K79(+) cells line the hair follicle infundibulum, a domain we show to be multilayered, biochemically distinct and maintained by Lrig1(+) stem cell-derived progeny. Upward movement of these cells sustains the infundibulum, while perturbation of this domain during acne progression is often accompanied by loss of K79. Our findings uncover previously unappreciated long-distance cell movements throughout the life cycle of the hair follicle, and suggest a novel mechanism by which the follicle generates its hollow core through outward cell migration.


Subject(s)
Acne Vulgaris/metabolism , Hair Follicle/embryology , Keratinocytes/metabolism , Keratins/metabolism , Regeneration , Animals , Cell Line , Cell Movement , HEK293 Cells , Hair/embryology , Hair Follicle/metabolism , Humans , Keratins/genetics , Keratins, Hair-Specific , Keratins, Type II , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Morphogenesis , Nerve Tissue Proteins/metabolism
6.
Am J Pathol ; 185(1): 197-213, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25451153

ABSTRACT

Wnt glycoproteins control key processes during development and disease by activating various downstream pathways. Wnt secretion requires post-translational modification mediated by the O-acyltransferase encoded by the Drosophila porcupine homolog gene (PORCN). In humans, PORCN mutations cause focal dermal hypoplasia (FDH, or Goltz syndrome), an X-linked dominant multisystem birth defect that is frequently accompanied by ocular abnormalities such as coloboma, microphthalmia, or even anophthalmia. Although genetic ablation of Porcn in mouse has provided insight into the etiology of defects caused by ectomesodermal dysplasia in FDH, the requirement for Porcn and the actual Wnt ligands during eye development have been unknown. In this study, Porcn hemizygosity occasionally caused ocular defects reminiscent of FDH. Conditional inactivation of Porcn in periocular mesenchyme led to defects in mid- and hindbrain and in craniofacial development, but was insufficient to cause ocular abnormalities. However, a combination of conditional Porcn depletion in optic vesicle neuroectoderm, lens, and neural crest-derived periocular mesenchyme induced severe eye abnormalities with high penetrance. In particular, we observed coloboma, transdifferentiation of the dorsal and ventral retinal pigment epithelium, defective optic cup periphery, and closure defects of the eyelid, as well as defective corneal morphogenesis. Thus, Porcn is required in both extraocular and neuroectodermal tissues to regulate distinct Wnt-dependent processes during morphogenesis of the posterior and anterior segments of the eye.


Subject(s)
Eye/embryology , Focal Dermal Hypoplasia/metabolism , Gene Expression Regulation, Developmental , Membrane Proteins/metabolism , Acyltransferases , Alleles , Animals , Disease Models, Animal , Eye/metabolism , Female , Genotype , Glycoproteins/metabolism , Hemizygote , In Situ Hybridization , Ligands , Male , Mice , Mice, Inbred C57BL , Mutation , Recombination, Genetic , Retinal Pigment Epithelium/embryology , Retinal Pigment Epithelium/metabolism , Wnt Proteins/metabolism
7.
Dev Biol ; 391(1): 89-98, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24721715

ABSTRACT

Pancreatic exocrine and endocrine lineages arise from multipotent pancreatic progenitor cells (MPCs). Exploiting the mechanisms that govern expansion and differentiation of these cells could enhance efforts to generate ß-cells from stem cells. Although our prior work indicates that the canonical Wnt signaling component ß-catenin is required qualitatively for exocrine acinar but not endocrine development, precisely how this requirement plays out at the level of MPCs and their lineage-restricted progeny is unknown. In addition, the contribution of ß-catenin function to ß-cell development remains controversial. To resolve the potential roles of ß-catenin in development of MPCs and ß-cells, we generated pancreas- and pre-endocrine-specific ß-catenin knockout mice. Pancreas-specific loss of ß-catenin produced not only a dramatic reduction in acinar cell numbers, but also a significant reduction in ß-cell mass. The loss of ß-cells is due not to a defect in the differentiation of endocrine precursors, but instead correlates with an early and specific loss of MPCs. In turn, this reflects a novel role for ß-catenin in maintaining proximal-distal patterning of the early epithelium, such that distal MPCs resort to a proximal, endocrine-competent "trunk" fate when ß-catenin is deleted. Moreover, ß-catenin maintains proximal-distal patterning, in part, by inhibiting Notch signaling. Subsequently, ß-catenin is required for proliferation of both distal and proximal cells, driving overall organ growth. In distinguishing two distinct roles for ß-catenin along the route of ß-cell development, we suggest that temporally appropriate positive and negative manipulation of this molecule could enhance expansion and differentiation of stem cell-derived MPCs.


Subject(s)
Epithelial Cells/cytology , Gene Expression Regulation, Developmental , Pancreas/embryology , Pancreas/metabolism , beta Catenin/genetics , beta Catenin/physiology , Animals , Body Patterning , Cell Differentiation , Cell Proliferation , Epithelium/metabolism , Genotype , Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Mice , Mice, Knockout , Organ Size , Receptors, Notch/metabolism , Signal Transduction , Stem Cells/cytology
8.
Cancer Cell ; 11(3): 211-3, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17349578

ABSTRACT

In this issue of Cancer Cell, Guerra and colleagues provide important new insights regarding the ability of specific pancreatic cell types to generate invasive pancreatic cancer. First, they demonstrate that classical pancreatic "ductal" neoplasia can be induced by activation of oncogenic Kras in nonductal exocrine cells. Second, they show that, while Kras activation in immature acinar and centroacinar cells is readily able to induce ductal neoplasia, Kras-mediated tumorigenesis in mature exocrine pancreas requires the induction of chronic epithelial injury. The results shed new light on the "cell of origin" of pancreatic ductal cancer and demonstrate that chronic pancreatitis provides a permissive environment for Kras-induced pancreatic neoplasia.


Subject(s)
Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/pathology , Genes, ras , Pancreatic Neoplasms/pathology , Pancreatitis, Chronic/pathology , Animals , Carcinoma in Situ/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Lineage , Cell Transformation, Neoplastic , Ceruletide , Humans , Mice , Mutation , Neoplasm Invasiveness , Pancreatic Neoplasms/metabolism , Pancreatitis, Chronic/chemically induced
9.
J Neurosci ; 33(30): 12197-207, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23884928

ABSTRACT

The LIM-Homeodomain transcription factor Lhx2 is an essential organizer of early eye development and is subsequently expressed in retinal progenitor cells (RPCs). To determine its requirement in RPCs, we performed a temporal series of conditional inactivations in mice with the early RPC driver Pax6 α-Cre and the tamoxifen-inducible Hes1(CreERT2) driver. Deletion of Lhx2 caused a significant reduction of the progenitor population and a corresponding increase in neurogenesis. Precursor fate choice correlated with the time of inactivation; early and late inactivation led to the overproduction of retinal ganglion cells (RGCs) and rod photoreceptors, respectively. In each case, however, the overproduction was selective, occurring at the expense of other cell types and indicating a role for Lhx2 in generating cell type diversity. RPCs that persisted in the absence of Lhx2 continued to generate RGC precursors beyond their normal production window, suggesting that Lhx2 facilitates a transition in competence state. These results identify Lhx2 as a key regulator of RPC properties that contribute to the ordered production of multiple cell types during retinal tissue formation.


Subject(s)
Gene Expression Regulation, Developmental , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Retina/embryology , Transcription Factors/genetics , Transcription Factors/physiology , Animals , Cell Differentiation/physiology , Female , Gene Knock-In Techniques , Male , Mice , Mice, Mutant Strains , Neural Stem Cells/cytology , Pregnancy , Retina/cytology , Retina/growth & development , Retina/physiology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/physiology , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/physiology
10.
Development ; 138(3): 431-41, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21205788

ABSTRACT

Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (ß)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Pancreas/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Homeodomain Proteins/genetics , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Intestinal Mucosa/metabolism , Intestines/cytology , Liver/cytology , Liver/metabolism , Mice , Mice, Mutant Strains , Microscopy, Fluorescence , Pancreas/embryology , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factor HES-1
11.
Toxicol Pathol ; 42(1): 217-28, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24178582

ABSTRACT

The past several decades have seen great effort devoted to mimicking the key features of pancreatic ductal adenocarcinoma (PDAC) in animals and have produced 2 robust models of this deadly cancer. Carcinogen-treated Syrian hamsters develop PDAC with genetic lesions, which reproduce those of human, including activation of the Kras oncogene, and early studies in this species validated nongenetic risk factors for PDAC including pancreatitis, obesity, and diabetes. More recently, PDAC research has been invigorated by the development of genetically engineered mouse models based on tissue-specific Kras activation and deletion of tumor suppressor genes. Surprisingly, mouse PDAC appears to arise from exocrine acinar rather than ductal cells, via a process of phenotypic reprogramming that is accelerated by inflammation. Studies in both models have uncovered molecular mechanisms by which inflammation promotes and sustains PDAC and identified targets for chemoprevention to suppress PDAC in high-risk individuals. The mouse model, in particular, has also been instrumental in developing new approaches to early detection as well as treatment of advanced disease. Together, animal models enable diverse approaches to basic and preclinical research on pancreatic cancer, the results of which will accelerate progress against this currently intractable cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Cricetinae , Humans , Mice , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Risk Factors
12.
Proc Natl Acad Sci U S A ; 108(31): 12752-7, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21768372

ABSTRACT

The Drosophila porcupine gene is required for secretion of wingless and other Wnt proteins, and sporadic mutations in its unique human ortholog, PORCN, cause a pleiotropic X-linked dominant disorder, focal dermal hypoplasia (FDH, also known as Goltz syndrome). We generated a conditional allele of the X-linked mouse Porcn gene and analyzed its requirement in Wnt signaling and embryonic development. We find that Porcn-deficient cells exhibit a cell-autonomous defect in Wnt ligand secretion but remain responsive to exogenous Wnts. Consistent with the female-specific inheritance pattern of FDH, Porcn hemizygous male embryos arrest during early embryogenesis and fail to generate mesoderm, a phenotype previously associated with loss of Wnt activity. Heterozygous Porcn mutant females exhibit a spectrum of limb, skin, and body patterning abnormalities resembling those observed in human patients with FDH. Many of these defects are recapitulated by ectoderm-specific deletion of Porcn, substantiating a long-standing hypothesis regarding the etiology of human FDH and extending previous studies that have focused on downstream elements of Wnt signaling, such as ß-catenin. Conditional deletion of Porcn thus provides an experimental model of FDH, as well as a valuable tool to probe Wnt ligand function in vivo.


Subject(s)
Ectoderm/metabolism , Focal Dermal Hypoplasia/metabolism , Membrane Proteins/metabolism , Wnt Proteins/metabolism , Acyltransferases , Amino Acid Sequence , Animals , Blotting, Western , Body Patterning/genetics , Cells, Cultured , Disease Models, Animal , Ectoderm/embryology , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Focal Dermal Hypoplasia/genetics , Gene Deletion , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Wnt Proteins/genetics , Wnt-5a Protein , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Wnt3 Protein , beta Catenin/genetics , beta Catenin/metabolism
13.
Dev Biol ; 362(1): 57-64, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22146645

ABSTRACT

The Notch signaling pathway regulates embryonic development of the pancreas, inhibiting progenitor differentiation into exocrine acinar and endocrine islet cells. The adult pancreas appears to lack progenitor cells, and its mature cell types are maintained by the proliferation of pre-existing differentiated cells. Nonetheless, Notch remains active in adult duct and terminal duct/centroacinar cells (CACs), in which its function is unknown. We previously developed mice in which cells expressing the Notch target gene Hes1 can be labeled and manipulated, by expression of Cre recombinase, and demonstrated that Hes1(+) CACs do not behave as acinar or islet progenitors in the uninjured pancreas, or as islet progenitors after pancreatic duct ligation. In the current study, we assessed the function of Notch signaling in the adult pancreas by deleting the transcription factor partner of Notch, Rbpj, specifically in Hes1(+) cells. We find that loss of Rbpj depletes the pancreas of Hes1-expressing CACs, abrogating their ongoing contribution to growth and homeostasis of more proximal duct structures. Upon Rbpj deletion, CACs undergo a rapid transformation into acinar cells, suggesting that constitutive Notch activity suppresses the acinar differentiation potential of CACs. Together, our data provide direct evidence of an endogenous genetic program to control interconversion of cell fates in the adult pancreas.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Pancreas, Exocrine/physiology , Phenotype , Receptors, Notch/metabolism , Signal Transduction/physiology , Acinar Cells/metabolism , Animals , Cell Differentiation/physiology , Histological Techniques , Mice , Oligonucleotides/genetics , Transcription Factor HES-1
14.
Cell Stem Cell ; 30(4): 488-497.e3, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37028408

ABSTRACT

Understanding the origin of pancreatic ß cells has profound implications for regenerative therapies in diabetes. For over a century, it was widely held that adult pancreatic duct cells act as endocrine progenitors, but lineage-tracing experiments challenged this dogma. Gribben et al. recently used two existing lineage-tracing models and single-cell RNA sequencing to conclude that adult pancreatic ducts contain endocrine progenitors that differentiate to insulin-expressing ß cells at a physiologically important rate. We now offer an alternative interpretation of these experiments. Our data indicate that the two Cre lines that were used directly label adult islet somatostatin-producing ∂ cells, which precludes their use to assess whether ß cells originate from duct cells. Furthermore, many labeled ∂ cells, which have an elongated neuron-like shape, were likely misclassified as ß cells because insulin-somatostatin coimmunolocalizations were not used. We conclude that most evidence so far indicates that endocrine and exocrine lineage borders are rarely crossed in the adult pancreas.


Subject(s)
Insulin-Secreting Cells , Evidence Gaps , Cell Differentiation , Pancreas/physiology , Pancreatic Ducts , Insulin , Somatostatin
15.
PLoS One ; 18(10): e0291512, 2023.
Article in English | MEDLINE | ID: mdl-37796967

ABSTRACT

Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.


Subject(s)
Pancreas, Exocrine , Pancreatic Neoplasms , Mice , Animals , Acinar Cells/metabolism , Epithelium/metabolism , Transcription Factors/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Phenotype , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism
16.
Development ; 136(23): 3895-906, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19906857

ABSTRACT

A crucial step in eye organogenesis is the transition of the optic vesicle into the optic cup. Several transcription factors and extracellular signals mediate this transition, but whether a single factor links them into a common genetic network is unclear. Here, we provide evidence that the LIM homeobox gene Lhx2, which is expressed in the optic neuroepithelium, fulfils such a role. In Lhx2(-/-) mouse embryos, eye field specification and optic vesicle morphogenesis occur, but development arrests prior to optic cup formation in both the optic neuroepithelium and lens ectoderm. This is accompanied by failure to maintain or initiate the expression patterns of optic-vesicle-patterning and lens-inducing determinants. Of the signaling pathways examined, only BMP signaling is noticeably altered and Bmp4 and Bmp7 mRNAs are undetectable. Lhx2(-/-) optic vesicles and lens ectoderm upregulate Pax2, Fgf15 and Sox2 in response to BMP treatments, and Lhx2 genetic mosaics reveal that transcription factors, including Vsx2 and Mitf, require Lhx2 cell-autonomously for their expression. Our data indicate that Lhx2 is required for optic vesicle patterning and lens formation in part by regulating BMP signaling in an autocrine manner in the optic neuroepithelium and in a paracrine manner in the lens ectoderm. We propose a model in which Lhx2 is a central link in a genetic network that coordinates the multiple pathways leading to optic cup formation.


Subject(s)
Eye/embryology , Homeodomain Proteins/physiology , Organogenesis/physiology , Transcription Factors/physiology , Animals , Body Patterning/genetics , Embryo, Mammalian , Fluorescent Antibody Technique, Direct , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunohistochemistry , In Situ Hybridization , LIM-Homeodomain Proteins , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Organ Culture Techniques , Organogenesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Cell Metab ; 34(11): 1779-1791.e9, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36240759

ABSTRACT

Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing ß cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand ß cells, whereas the pore-forming host defense protein, Reg3, stimulates ß cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for ß cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.


Subject(s)
Diabetes Mellitus , Microbiota , Mice , Animals , Zebrafish , Pancreas/metabolism , Insulin/metabolism , Diabetes Mellitus/metabolism , Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 105(48): 18907-12, 2008 Dec 02.
Article in English | MEDLINE | ID: mdl-19028876

ABSTRACT

Efforts to model pancreatic cancer in mice have focused on mimicking genetic changes found in the human disease, particularly the activating KRAS mutations that occur in pancreatic tumors and their putative precursors, pancreatic intraepithelial neoplasia (PanIN). Although activated mouse Kras mutations induce PanIN lesions similar to those of human, only a small minority of cells that express mutant Kras go on to form PanINs. The basis for this selective response is unknown, and it is similarly unknown what cell types in the mature pancreas actually contribute to PanINs. One clue comes from the fact that PanINs, unlike most cells in the adult pancreas, exhibit active Notch signaling. We hypothesize that Notch, which inhibits differentiation in the embryonic pancreas, contributes to PanIN formation by abrogating the normal differentiation program of tumor-initiating cells. Through conditional expression in the mouse pancreas, we find dramatic synergy between activated Notch and Kras in inducing PanIN formation. Furthermore, we find that Kras activation in mature acinar cells induces PanIN lesions identical to those seen upon ubiquitous Kras activation, and that Notch promotes both initiation and dysplastic progression of these acinar-derived PanINs, albeit short of invasive adenocarcinoma. At the cellular level, Notch/Kras coactivation promotes rapid reprogramming of acinar cells to a duct-like phenotype, providing an explanation for how a characteristically ductal tumor can arise from nonductal acinar cells.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Ducts/cytology , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, Notch/metabolism , ras Proteins/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Estrogen Antagonists/metabolism , Female , Humans , Mice , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Pregnancy , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Receptors, Notch/genetics , Signal Transduction/physiology , Tamoxifen/metabolism , Transgenes , ras Proteins/genetics
19.
Neurology ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34135078

ABSTRACT

OBJECTIVE: To identify novel disease associated loci for amyotrophic lateral sclerosis (ALS), we utilized sequencing data and performed in vitro and in vivo experiments to demonstrate pathogenicity of mutations identified in TP73. METHODS: We analyzed exome sequences of 87 sporadic ALS patients and 324 controls, with confirmatory sequencing in independent ALS cohorts of >2,800 patients. For the top hit, TP73, a regulator of apoptosis, differentiation, and a binding partner as well as homolog of the tumor suppressor gene TP53, we assayed mutation effects using in vitro and in vivo experiments. C2C12 myoblast differentiation assays, characterization of myotube appearance, and immunoprecipitation of p53-p73 complexes were perform in vitro. In vivo, we used CRISPR/Cas9 targeting of zebrafish tp73 to assay motor neuron number and axon morphology. RESULTS: Five heterozygous rare, nonsynonymous mutations in TP73 were identified in our sporadic ALS cohort. In independent ALS cohorts, we identified an additional 19 rare, deleterious variants in TP73. Patient TP73 mutations caused abnormal differentiation and increased apoptosis in the myoblast differentiation assay, with abnormal myotube appearance. Immunoprecipitation of mutant ΔN-p73 demonstrated that patient mutations hinder ΔN-p73's ability to bind p53. CRISPR/Cas9 knockout of tp73 in zebrafish led to impaired motor neuron development and abnormal axonal morphology, concordant with ALS pathology. CONCLUSION: Together, these results strongly suggest that variants in TP73 correlate with risk for ALS and indicate a novel role for apoptosis in ALS disease pathology.

20.
BMC Dev Biol ; 10: 38, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20377894

ABSTRACT

BACKGROUND: Histological evidence suggests that insulin-producing beta (beta)-cells arise in utero from duct-like structures of the fetal exocrine pancreas, and genetic lineage tracing studies indicate that they are maintained in the adult by self-renewal. These studies have not addressed the origin of the new beta-cells that arise in large numbers shortly after birth, and contradictory lineage tracing results have been published regarding the differentiation potential of duct cells in this period. We established an independent approach to address this question directly. RESULTS: We generated mice in which duct and acinar cells, comprising the exocrine pancreas, can be genetically marked by virtue of their expressing the mucin gene Muc1. Using these mice, we performed time-specific lineage tracing to determine if these cells undergo endocrine transdifferentiation in vivo. We find that Muc1+ cells do give rise to beta-cells and other islet cells in utero, providing formal proof that mature islets arise from embryonic duct structures. From birth onwards, Muc1 lineage-labeled cells are confined to the exocrine compartment, with no detectable contribution to islet cells. CONCLUSIONS: These results argue against a significant contribution by exocrine transdifferentiation to the normal postnatal expansion and maintenance of beta-cell mass. Exocrine transdifferentiation has been proposed to occur during injury and regeneration, and our experimental model is suited to test this hypothesis in vivo.


Subject(s)
Cell Transdifferentiation , Pancreas/cytology , Pancreas/metabolism , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Glucagon-Secreting Cells/metabolism , Insulin-Secreting Cells/metabolism , Mice , Mucin-1/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL