Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Cancer ; 5(1): 114-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177459

ABSTRACT

De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases. Additional complexity was driven by polyclonal metastatic seeding from phylogenetically related primary populations. When simulating clinical practice relying on a single tissue region, genomic heterogeneity plus variable tumor fraction across samples caused inaccurate genotyping of dominant disease; however, pooling extracted DNA from multiple biopsy cores before sequencing can rescue misassigned somatic genotypes. Our results define the relationship between synchronous treatment-sensitive primary and metastatic lesions in men with de novo metastatic prostate cancer and provide a framework for implementing genomics-guided patient management.


Subject(s)
Precision Medicine , Prostatic Neoplasms , Male , Humans , Genotype , Prostatic Neoplasms/genetics , Prostate/pathology , Biopsy
2.
Nat Commun ; 15(1): 1828, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418825

ABSTRACT

No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prognosis , Prospective Studies , Biological Specimen Banks , Biomarkers, Tumor/genetics , Liquid Biopsy , Mutation
3.
JCO Precis Oncol ; 6: e2100543, 2022 04.
Article in English | MEDLINE | ID: mdl-35507889

ABSTRACT

PURPOSE: Pulmonary involvement is rare in metastatic hormone-sensitive prostate cancer (mHSPC) that recurs after treatment for localized disease. Guidelines recommend intensive systemic therapy, similar to patients with liver metastases, but some lung-recurrent mHSPC may have good outcomes. Genomic features of lung metastases may clarify disease aggression, but are poorly understood since lung biopsy is rarely performed. We present a comparative assessment of genomic drivers and heterogeneity in metachronous prostate tumors and lung metastases. METHODS: We leveraged a prospective functional imaging study of 208 biochemically recurrent prostate cancers to identify 10 patients with lung-recurrent mHSPC. Histologic diagnosis was attained via thoracic surgery or fine-needle lung biopsy. We retrieved clinical data and performed multiregion sampling of primary tumors and metastases. Targeted and/or whole-exome sequencing was applied to 46 primary and 32 metastatic foci. RESULTS: Unusually for mHSPC, all patients remained alive despite a median follow-up of 11.5 years. Several patients experienced long-term freedom from systemic treatment. The genomic landscape of lung-recurrent mHSPC was typical of curable prostate cancer with frequent PTEN, SPOP, and chromosome 8p alterations, and there were no deleterious TP53 and DNA damage repair gene mutations that characterize aggressive prostate cancer. Despite a long median time to recurrence (76.8 months), copy number alterations and clonal mutations were highly conserved between metastatic and primary foci, consistent with intrapatient homogeneity and limited genomic evolution. CONCLUSION: In this retrospective hypothesis-generating study, we observed indolent genomic etiology in selected lung-recurrent mHSPC, cautioning against grouping these patients together with liver or bone-predominant mHSPC. Although our data do not generalize to all patients with lung metastases, the results encourage prospective efforts to stratify lung-recurrent mHSPC by genomic features.


Subject(s)
Lung Neoplasms , Neoplasms, Second Primary , Prostatic Neoplasms , Genomics , Hormones/therapeutic use , Humans , Lung/pathology , Lung Neoplasms/genetics , Male , Nuclear Proteins/therapeutic use , Prospective Studies , Prostatic Neoplasms/genetics , Repressor Proteins/therapeutic use , Retrospective Studies
4.
Urol Case Rep ; 39: 101762, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34258232

ABSTRACT

The management of metastatic urothelial cancer is rapidly evolving since immune checkpoint inhibitors were introduced. We present the case of a patient with metastatic upper tract urothelial cancer who had a complete response to durvalumab and tremelimumab. This patient then developed multiple non-invasive papillary bladder tumours. Next-generation sequencing revealed that the tumours shared ancestry with the upper tract cancer, although there were key differences, most notably the presence of a TP53 missense mutation in the upper tract disease that was absent in the bladder tumours. This illustrates an important practice point in the management of exceptional responders to checkpoint inhibitors.

5.
Clin Cancer Res ; 27(6): 1650-1662, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33414135

ABSTRACT

PURPOSE: DNA damage repair (DDR) defects are common across cancer types and can indicate therapeutic vulnerability. Optimal exploitation of DDR defects in prostate cancer requires new diagnostic strategies and a better understanding of associated clinical genomic features. EXPERIMENTAL DESIGN: We performed targeted sequencing of 1,615 plasma cell-free DNA samples from 879 patients with metastatic prostate cancer. Depth-based copy-number calls and heterozygous SNP imbalance were leveraged to expose DDR-mutant allelic configuration and categorize mechanisms of biallelic loss. We used split-read structural variation analysis to characterize tumor suppressor rearrangements. Patient-matched archival primary tissue was analyzed identically. RESULTS: BRCA2, ATM, and CDK12 were the most frequently disrupted DDR genes in circulating tumor DNA (ctDNA), collectively mutated in 15% of evaluable cases. Biallelic gene disruption via second somatic alteration or mutant allele-specific imbalance was identified in 79% of patients. A further 2% exhibited homozygous BRCA2 deletions. Tumor suppressors TP53, RB1, and PTEN were controlled via disruptive chromosomal rearrangements in BRCA2-defective samples, but via oncogene amplification in context of CDK12 defects. TP53 mutations were rare in cases with ATM defects. DDR mutations were re-detected across 94% of serial ctDNA samples and in all available archival primary tissues, indicating they arose prior to metastatic progression. Loss of BRCA2 and CDK12, but not ATM, was associated with poor clinical outcomes. CONCLUSIONS: BRCA2, ATM, and CDK12 defects are each linked to distinct prostate cancer driver genomics and aggression. The consistency of DDR status in longitudinal samples and resolution of allelic status underscores the potential for ctDNA as a diagnostic tool.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , BRCA2 Protein/genetics , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Cyclin-Dependent Kinases/genetics , Mutation , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Aged, 80 and over , Ataxia Telangiectasia Mutated Proteins/blood , BRCA2 Protein/blood , Biomarkers, Tumor/blood , Circulating Tumor DNA/analysis , Combined Modality Therapy , Cyclin-Dependent Kinases/blood , DNA Repair , Follow-Up Studies , Gene Deletion , Gene Rearrangement , Genomics , Humans , Male , Middle Aged , PTEN Phosphohydrolase/blood , PTEN Phosphohydrolase/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/classification , Prostatic Neoplasms, Castration-Resistant/genetics , Retrospective Studies , Survival Rate
6.
Nat Commun ; 12(1): 184, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420073

ABSTRACT

Molecular stratification can improve the management of advanced cancers, but requires relevant tumor samples. Metastatic urothelial carcinoma (mUC) is poised to benefit given a recent expansion of treatment options and its high genomic heterogeneity. We profile minimally-invasive plasma circulating tumor DNA (ctDNA) samples from 104 mUC patients, and compare to same-patient tumor tissue obtained during invasive surgery. Patient ctDNA abundance is independently prognostic for overall survival in patients initiating first-line systemic therapy. Importantly, ctDNA analysis reproduces the somatic driver genome as described from tissue-based cohorts. Furthermore, mutation concordance between ctDNA and matched tumor tissue is 83.4%, enabling benchmarking of proposed clinical biomarkers. While 90% of mutations are identified across serial ctDNA samples, concordance for serial tumor tissue is significantly lower. Overall, our exploratory analysis demonstrates that genomic profiling of ctDNA in mUC is reliable and practical, and mitigates against disease undersampling inherent to studying archival primary tumor foci. We urge the incorporation of cell-free DNA profiling into molecularly-guided clinical trials for mUC.


Subject(s)
Circulating Tumor DNA/blood , Genomics , Plasma , Urinary Bladder Neoplasms/blood , Urinary Bladder Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Transitional Cell/genetics , Female , Humans , Male , Middle Aged , Mutation , Prognosis , Receptor, ErbB-2/genetics , Retrospective Studies , Survival Analysis , Urinary Bladder , Xeroderma Pigmentosum Group D Protein/genetics
7.
Eur Urol ; 78(6): 834-844, 2020 12.
Article in English | MEDLINE | ID: mdl-32451180

ABSTRACT

BACKGROUND: Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers. OBJECTIVE: To determine the prevalence, genomic context, and clinical associations of AKT1/PIK3CA activating mutations in mCRPC. DESIGN, SETTING, AND PARTICIPANTS: We analysed targeted cell-free DNA (cfDNA) sequencing data from 599 metastatic prostate cancer patients with circulating tumour DNA (ctDNA) content above 2%. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: In patients with AKT1/PIK3CA mutations, cfDNA was subjected to PTEN intron sequencing and matched diagnostic tumour tissue was analysed when possible. RESULTS AND LIMITATIONS: Of the patients, 6.0% (36/599) harboured somatic clonal activating mutation(s) in AKT1 or PIK3CA. Mutant allele-specific imbalance was common. Clonal mutations in mCRPC ctDNA were typically detected in pretreatment primary tissue and were consistent across serial ctDNA collections. AKT1/PIK3CA-mutant mCRPC had fewer androgen receptor (AR) gene copies than AKT1/PIK3CA wild-type mCRPC (median 4.7 vs 10.3, p = 0.003). AKT1 mutations were mutually exclusive with PTEN alterations. Patients with and without AKT1/PIK3CA mutations showed similar clinical outcomes with standard of care treatments. A heavily pretreated mCRPC patient with an AKT1 mutation experienced a 50% decline in prostate-specific antigen with Akt inhibitor (ipatasertib) monotherapy. Ipatasertib also had a marked antitumour effect in a patient-derived xenograft harbouring an AKT1 mutation. Limitations include the inability to assess AKT1/PIK3CA correlatives in ctDNA-negative patients. CONCLUSIONS: AKT1/PIK3CA activating mutations are relatively common and delineate a distinct mCRPC molecular subtype with low-level AR copy gain. Clonal prevalence and evidence of mutant allele selection propose PI3K pathway dependency in selected patients. The use of cfDNA screening enables prospective clinical trials to test PI3K pathway inhibitors in this population. PATIENT SUMMARY: Of advanced prostate cancer cases, 6% have activating mutations in the genes AKT1 or PIK3CA. These mutations can be identified using a blood test and may help select patients suitable for clinical trials of phosphatidylinositol 3-kinase inhibitors.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Mutation , Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins c-akt/genetics , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Neoplasm Metastasis , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies
8.
Clin Cancer Res ; 26(5): 1114-1125, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31744831

ABSTRACT

PURPOSE: DNA mismatch repair defects (MMRd) and tumor hypermutation are rare and under-characterized in metastatic prostate cancer (mPC). Furthermore, because hypermutated MMRd prostate cancers can respond to immune checkpoint inhibitors, there is an urgent need for practical detection tools. EXPERIMENTAL DESIGN: We analyzed plasma cell-free DNA-targeted sequencing data from 433 patients with mPC with circulating tumor DNA (ctDNA) purity ≥2%. Samples with somatic hypermutation were subjected to 185 × whole-exome sequencing and capture of mismatch repair gene introns. Archival tissue was analyzed with targeted sequencing and IHC. RESULTS: Sixteen patients (3.7%) had somatic hypermutation with MMRd etiology, evidenced by deleterious alterations in MSH2, MSH6, or MLH1, microsatellite instability, and characteristic trinucleotide signatures. ctDNA was concordant with mismatch repair protein IHC and DNA sequencing of tumor tissue. Tumor suppressors such as PTEN, RB1, and TP53 were inactivated by mutation rather than copy-number loss. Hotspot mutations in oncogenes such as AKT1, PIK3CA, and CTNNB1 were common, and the androgen receptor (AR)-ligand binding domain was mutated in 9 of 16 patients. We observed high intrapatient clonal diversity, evidenced by subclonal driver mutations and shifts in mutation allele frequency over time. Patients with hypermutation and MMRd etiology in ctDNA had a poor response to AR inhibition and inferior survival compared with a control cohort. CONCLUSIONS: Hypermutated MMRd mPC is associated with oncogene activation and subclonal diversity, which may contribute to a clinically aggressive disposition in selected patients. In patients with detectable ctDNA, cell-free DNA sequencing is a practical tool to prioritize this subtype for immunotherapy.See related commentary by Schweizer and Yu, p. 981.


Subject(s)
Circulating Tumor DNA , Prostatic Neoplasms , DNA Mismatch Repair , Humans , Immunotherapy , Male , Microsatellite Instability
SELECTION OF CITATIONS
SEARCH DETAIL