Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Publication year range
1.
Anal Biochem ; 696: 115676, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307447

ABSTRACT

Norepinephrine (NE) is the primary catecholamine (CA) of interest in the medical field, as it plays a key role in regulating the hormonal and neurological systems. Some NE concentration dysfunction can lead to a number of serious physical conditions. As a result, quick and sensitive NE detection is most critical in medical technology. Thus, in this research, a molecularly imprinted polymer (MIP) was used to create an electrochemical sensor for the selective detection of NE. Prior to this, functional monomers were chosen through molecular modeling utilizing molecular mechanics and quantum mechanics computations. According to these studies, the 3-aminophenylboronic acid (3-APBA) functional monomer produces the most stable complex with NE in molecular modeling calculations. Based on this, by electropolymerizing 3-APBA in the presence of the template molecule NE, an imprinting polymer film is formed on the screen-printed carbon electrode (SPCE) surface. Stepwise fabrication of imprinted polymer films was examined through differential pulse voltammetry (DPV), cyclic voltammetry (CV), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The performance of the electrochemical NE sensor removal and rebinding levels of the template was studied and optimized. The selectivity for NE was confirmed by using interference studies of small molecules like dopamine, tyrosine, and serotonin. Under optimum levels, the fabricated MIP sensor had a broad linear range over NE concentrations of 0.1 pM-5 pM; sensitivity: 0.004 mA pM-1; limit of detection: 0.03 pM. It is noteworthy that the newly created MIP sensor was effectively validated for NE detection in plasma samples.

2.
Luminescence ; 39(9): e4898, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39323008

ABSTRACT

Cyanobacteria are resilient microorganisms and thrive in environments exposed to UV radiation, ranging from ocean surfaces to scorching hot springs and dry expanses. 'Cyanobacterial Resilience' refers to their ability to withstand UV radiation, revealing intricate genomic secrets and adaptive mechanisms ensuring survival. These mechanisms include metabolic adaptations, robust DNA repair systems and UV-protective compounds such as Scytonemin and Mycosporine, vital for shielding against UV radiation survival. Cyanobacteria are crucial pioneers in UV-exposed ecosystems, highlighting their resilience and adaptability. Some cyanobacteria exhibit luminescence, emitting blue-green light due to phycobiliproteins, while bioluminescence in cyanobacteria, if it occurs, involves different compounds rather than luciferins and luciferase enzymes. This luminescence holds promise for various biotechnological applications, such as biosensors, imaging probes and carbon sequestration, for participating in photocatalytic processes for water purification and CO2 conversion, and contributes to solar simulation studies to advance photosynthesis and renewable energy technologies. The versatile applications of these materials highlight their ecological importance and potential in addressing global challenges. In conclusion, 'Cyanobacterial Resilience' highlights the remarkable adaptation strategies of cyanobacteria in UV-exposed environments. It emphasises their role as pioneers and innovators in biological and technological domains, providing insights into their enduring impact on ecosystems and scientific advancement.


Subject(s)
Cyanobacteria , Ecosystem , Ultraviolet Rays , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Fluorescence , Luminescence
3.
J Hepatol ; 78(3): 614-626, 2023 03.
Article in English | MEDLINE | ID: mdl-36528236

ABSTRACT

BACKGROUND & AIMS: In recent years, intrahepatic cholangiocarcinoma (iCCA) has evolved as a "role model" for precision oncology in gastrointestinal cancers. However, its rarity, paired with its genomic heterogeneity, challenges the development and evolution of targeted therapies. Interrogating large datasets drives better understanding of the characteristics of molecular subgroups of rare cancers and enables the identification of genomic patterns that remain unrecognized in smaller cohorts. METHODS: We performed a retrospective analysis of 6,130 patients diagnosed with iCCA from the FoundationCORE database who received diagnostic panel sequencing on the FoundationOne platform. Short variants/fusion-rearrangements and copy number alterations in >300 tumor-associated genes were evaluated, and the tumor mutational burden (TMB) as well as the microsatellite instability (MSI) status were available for the majority of the cohort. RESULTS: We provide a highly representative cartography of the genomic landscape of iCCA and outline the co-mutational spectra of seven therapeutically relevant oncogenic driver genes: IDH1/2, FGFR2, ERBB2, BRAF, MDM2, BRCA1/2, MET and KRASG12C. We observed a negative selection of RTK/RAS/ERK pathway co-alterations, and an enrichment of epigenetic modifiers such as ARID1A and BAP1 in patients with IDH1/2 and FGFR2 alterations. RNF43 as well as KMT2D occurred with high frequency in MSIhigh and TMBhigh tumors. CONCLUSION: Detailed knowledge of the most prevalent genomic constellations is key to the development of effective treatment strategies for iCCA. Our study provides a valuable resource that could be used to assess the feasibility of clinical trials and subgroup analyses, spurs the development of translationally relevant preclinical models, and serves as a knowledge base to predict potential mechanisms of resistance to targeted therapies in genomically defined subgroups. IMPACT AND IMPLICATIONS: Due to the high frequency of targetable alterations, molecular diagnostics is recommended in patients with biliary tract cancers, and especially in those with iCCA. The identification of an actionable lesion, however, does not guarantee therapeutic success, and the co-mutational spectrum may act as a critical modifier of drug response. Using a large dataset of comprehensive panel sequencing results from 6,130 patients with iCCA, we provide a detailed analysis of the co-mutational spectrum of the most frequent druggable genetic alterations, which is meant to serve as a reference to establish genetically relevant preclinical models, develop hypothesis-driven combination therapies and identify recurrent genetic profiles.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Retrospective Studies , Precision Medicine , Cholangiocarcinoma/pathology , Mutation , Biomarkers, Tumor/genetics , Bile Ducts, Intrahepatic/pathology
4.
Oncologist ; 27(10): 839-848, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35598205

ABSTRACT

BACKGROUND: In patients with non-small cell lung cancer (NSCLC), 10%-40% will eventually develop brain metastases. We present the clinicopathologic, genomic, and biomarker landscape of a large cohort of NSCLC brain metastases (NSCLC-BM) samples. MATERIALS AND METHODS: We retrospectively analyzed 3035 NSCLC-BM tested with comprehensive genomic profiling (CGP) during routine clinical care. In addition, we compared the NSCLC-BM to a separate cohort of 7277 primary NSCLC (pNSCLC) specimens. Finally, we present data on 67 paired patients with NSCLC-BM and pNSCLC. RESULTS: Comprehensive genomic profiling analysis of the 3035 NSCLC-BMs found that the most frequent genomic alterations (GAs) were in the TP53, KRAS, CDKN2A, STK11, CDKN2B, EGFR, NKX2-1, RB1, MYC, and KEAP1 genes. In the NSCLC-BM cohort, there were significantly higher rates of several targetable GAs compared with pNSCLC, including ALK fusions, KRAS G12C mutations, and MET amplifications; and decreased frequency of MET exon14 skipping mutations (all P < .05). In the subset of NSCLC-BM (n = 1063) where concurrent PD-L1 immunohistochemistry (IHC) was performed, 54.7% of the patients with NSCLC-BM were eligible for pembrolizumab based on PD-L1 IHC (TPS ≥ 1), and 56.9% were eligible for pembrolizumab based on TMB-High status. In addition, in a series 67 paired pNSCLC and NSCLC-BM samples, 85.1% (57/67) had at least one additional GA discovered in the NSCLC-BM sample when compared with the pNSCLC sample. CONCLUSIONS: Herein, we defined the clinicopathologic, genomic, and biomarker landscape of a large cohort of patients with NSCLC-BM which can help inform study design of future clinical studies for patients with NSCLC with BM. In certain clinical situations, metastatic NSCLC brain tissue or cerebral spinal fluid specimens may be needed to fully optimize personalized treatment.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Genomics , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , NF-E2-Related Factor 2/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Protein-Tyrosine Kinases/genetics , Retrospective Studies
5.
Oncologist ; 27(8): 655-662, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35552752

ABSTRACT

BACKGROUND: In the current study, we examined the real-world prevalence of highly pigmented advanced melanomas (HPMel) and the clinicopathologic, genomic, and ICPI biomarker signatures of this class of tumors. MATERIALS AND METHODS: Our case archive of clinical melanoma samples for which the ordering physician requested testing for both PD-L1 immunohistochemistry (IHC) and comprehensive genomic profiling (CGP) was screened for HPMel cases, as well as for non-pigmented or lightly pigmented advanced melanoma cases (LPMel). RESULTS: Of the 1268 consecutive melanoma biopsies in our archive that had been submitted for PD-L1 IHC, 13.0% (165/1268) were HPMel and 87.0% (1103/1268) were LPMel. In the HPMel cohort, we saw a significantly lower tumor mutational burden (TMB, median 8.8 mutations/Mb) than in the LPMel group (11.4 mut/Mb), although there was substantial overlap. In examining characteristic secondary genomic alterations (GA), we found that the frequencies of GA in TERTp, CDKN2A, TP53, and PTEN were significantly lower in the HPMel cases than in LPMel. A higher rate of GA in CTNNB1, APC, PRKAR1A, and KIT was identified in the HPMel cohort compared with LPMel. CONCLUSIONS: In this study, we quantified the failure rates of melanoma samples for PD-L1 testing due to high melanin pigmentation and showed that CGP can be used in these patients to identify biomarkers that can guide treatment decisions for HPMel patients. Using this practical clinical definition for tumor pigmentation, our results indicate that HPMel are frequent at 13% of melanoma samples, and in general appear molecularly less developed, with a lower TMB and less frequent secondary GA of melanoma progression.


Subject(s)
B7-H1 Antigen , Melanoma , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Genomics , Humans , Melanoma/genetics , Melanoma/pathology , Mutation , Pigmentation/genetics
6.
Oncologist ; 27(9): 732-739, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35598202

ABSTRACT

BACKGROUND: We sought to characterize response to immune checkpoint inhibitor (ICI) in non-squamous non-small cell lung cancer (NSCLC) across various CD274 copy number gain and loss thresholds and identify an optimal cutoff. MATERIALS AND METHODS: A de-identified nationwide (US) real-world clinico-genomic database was leveraged to study 621 non-squamous NSCLC patients treated with ICI. All patients received second-line ICI monotherapy and underwent comprehensive genomic profiling as part of routine clinical care. Overall survival (OS) from start of ICI, for CD274 copy number gain and loss cohorts across varying copy number thresholds, were assessed. RESULTS: Among the 621 patients, patients with a CD274 CN greater than or equal to specimen ploidy +2 (N = 29) had a significantly higher median (m) OS when compared with the rest of the cohort (N = 592; 16.1 [8.9-37.3] vs 8.6 [7.1-10.9] months, hazard ratio (HR) = 0.6 [0.4-1.0], P-value = .05). Patients with a CD274 copy number less than specimen ploidy (N = 299) trended toward a lower mOS when compared to the rest of the cohort (N = 322; 7.5 [5.9-11.3] vs 9.6 [7.9-12.8] months, HR = 0.9 [0.7-1.1], P-value = .3). CONCLUSION: This work shows that CD274 copy number gains at varying thresholds predict different response to ICI blockade in non-squamous NSCLC. Considering these data, prospective clinical trials should further validate these findings, specifically in the context of PD-L1 IHC test results.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , DNA Copy Number Variations/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prospective Studies
7.
Hepatology ; 74(3): 1357-1370, 2021 09.
Article in English | MEDLINE | ID: mdl-33709535

ABSTRACT

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and a highly lethal malignancy. Chemotherapeutic options are limited, but a considerable subset of patients harbors genetic lesions for which targeted agents exist. Fibroblast growth factor receptor 2 (FGFR2) fusions belong to the most frequent and therapeutically relevant alterations in ICC, and the first FGFR inhibitor was recently approved for the treatment of patients with progressed, fusion-positive ICC. Response rates of up to 35% indicate that FGFR-targeted therapies are beneficial in many but not all patients. Thus far, no established biomarkers exist that predict resistance or response to FGFR-targeted therapies in patients with ICC. APPROACH AND RESULTS: In this study, we use an autochthonous murine model of ICC to demonstrate that FGFR2 fusions are potent drivers of malignant transformation. Furthermore, we provide preclinical evidence that the co-mutational spectrum acts not only as an accelerator of tumor development, but also modifies the response to targeted FGFR inhibitors. Using pharmacologic approaches and RNA-interference technology, we delineate that Kirsten rat sarcoma oncogene (KRAS)-activated mitogen-activated protein kinase signaling causes primary resistance to FGFR inhibitors in FGFR2 fusion-positive ICC. The translational relevance is supported by the observation that a subset of human FGFR2 fusion patients exhibits transcriptome profiles reminiscent of KRAS mutant ICC. Moreover, we demonstrate that combination therapy has the potential to overcome primary resistance and to sensitize tumors to FGFR inhibition. CONCLUSIONS: Our work highlights the importance of the co-mutational spectrum as a significant modifier of response in tumors that harbor potent oncogenic drivers. A better understanding of the genetic underpinnings of resistance will be pivotal to improve biomarker-guided patient selection and to design clinically relevant combination strategies.


Subject(s)
Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Cell Transformation, Neoplastic/genetics , Cholangiocarcinoma/genetics , Gene Fusion/genetics , Liver Neoplasms, Experimental/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adenosylhomocysteinase/genetics , Animals , Antigens, Neoplasm/genetics , Antimetabolites, Antineoplastic/pharmacology , Bile Duct Neoplasms/pathology , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cholangiocarcinoma/pathology , Co-Repressor Proteins/genetics , Cyclic AMP Response Element-Binding Protein A/genetics , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Fetal Proteins/genetics , Mice , Microtubule-Associated Proteins/genetics , Mutation , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Vesicular Transport Proteins/genetics , Gemcitabine
8.
Oncologist ; 26(9): 787-796, 2021 09.
Article in English | MEDLINE | ID: mdl-34080753

ABSTRACT

BACKGROUND: At diagnosis, the majority of patients with intrahepatic cholangiocarcinoma (IHCC) present with advanced disease and a poor prognosis. Comprehensive genomic profiling (CGP) early in the disease course may increase access to targeted therapies and clinical trials; however, unresolved issues remain surrounding the optimal biopsy type to submit for CGP. PATIENTS AND METHODS: Mutational frequencies between primary tumor biopsies (Pbx), metastatic biopsies (Mbx), and liquid biopsies (Lbx) in 1,632 patients with IHCC were compared. RESULTS: Potentially actionable alterations were found in 52%, 34%, and 35% of patients in the Pbx, Mbx, and Lbx cohorts, respectively. In Pbx, Mbx, and Lbx, FGFR2 rearrangements were found in 9%, 6%, and 4%, and IDH1 mutations were identified in 16%, 5%, and 9% patients, respectively. Moreover, alterations in FGFR2 and IDH1 were significantly associated with distinct ancestries, including 2.1-fold enrichment for FGFR2 rearrangements in patients with African ancestry and 1.5-fold enrichment for IDH1 mutations in patients with admixed American (Hispanic) ancestry. Finally, the publication of biomarker-driven clinical trials in IHCC correlated with changing CGP testing patterns. Significant correlations between patient characteristics and IHCC trial disclosures were observed, including a significant decrease from time between biopsy and CGP testing, and more frequent testing of primary versus metastatic samples. CONCLUSION: Overall, because of the high likelihood of identifying actionable genomic alterations, CGP should be considered for the majority of patients with inoperable IHCC, and Lbx and Mbx can be considered as part of the diagnostic suite. IMPLICATIONS FOR PRACTICE: Comprehensive genomic profiling (CGP) should be considered for all patients with intrahepatic cholangiocarcinoma (IHCC) or suspected IHCC, as actionable alterations were commonly found in multiple genes and a wide variety of FGFR2 fusion partners were identified. The disclosure of IHCC trial data correlated with increased use of CGP, an encouraging trend that moves new therapeutic options forward for rare cancers with a rare biomarker. Although tissue from the primary lesion may identify actionable alterations at higher rates, CGP of a liquid biopsy or metastatic site can be considered, particularly if the primary tissue block is exhausted.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Biopsy , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Genomics , Humans
9.
Oncologist ; 26(5): 375-382, 2021 05.
Article in English | MEDLINE | ID: mdl-33687775

ABSTRACT

INTRODUCTION: Pembrolizumab was approved with an accompanying companion diagnostic (CDx) assay (PD-L1 DAKO 22C3) for urothelial carcinoma (UC). In this study, we further characterize the clinicopathologic and genomic features of UC that are programmed death-ligand 1 (PD-L1) positive. MATERIALS AND METHODS: The cohort of this study consisted of a total of 528 consecutive UC patients with PD-L1 immunohistochemistry (IHC) and comprehensive genomic profiling (CGP). All PD-L1 IHC testing was performed using the DAKO 22C3 CDx assay for UC. PD-L1 positivity was determined at a combined positive score ≥ 10. RESULTS: A total of 44.5% (235/528) patients with UC were PD-L1positive . A lower PD-L1 positivity rate was detected in primary (42.3%, 148/350) versus metastatic sites (48.9%, 87/178). PD-L1 positivity was dependent on the location of the metastatic sites. CGP revealed PD-L1positive patients had more frequent genomic alterations (GAs) in TP53 (p = .006) and RB1 (p = .003) and less frequent GAs in FGFR3 (p = .001) and MTAP (p = .028). The APOBEC mutational signature and tumor mutational burden (TMB)-high were more common in PD-L1positive patients. By testing patients with UC with CGP, in addition to PD-L1 IHC, an additional 97 patients (18.4%) in the total cohort were eligible for immunotherapy based on TMB status. CONCLUSION: PD-L1positive and PD-L1negative urothelial carcinomas are genomically different. Also, our study provides the framework for future clinical investigation with regard to specimen site selection for PD-L1 testing as well as candidate biomarker genomic alterations that may predict for better response or lack of response to immune checkpoint inhibitors. IMPLICATIONS FOR PRACTICE: In this study, a higher prevalence of TP53 and RB1 alterations and APOBEC mutational signatures in the PD-L1positive urothelial carcinoma disease subset and enrichment of FGFR3 alterations in the PD-L1negative disease subset were found. These data provide the basis for future investigation into the role of these genomic changes as positive and negative predictors of immunotherapy response. Also, differences wer seen in PD-L1 positivity based on the collection site of the sample, which can provide a framework for future clinical trial design and could influence sample selection for PD-L1 testing in patients with urothelial carcinoma when multiple samples are available.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Genomics , Humans , Immunohistochemistry
10.
Mod Pathol ; 34(7): 1425-1433, 2021 07.
Article in English | MEDLINE | ID: mdl-33637877

ABSTRACT

Positive program death-ligand 1 (PD-L1) immunohistochemistry (IHC) is an approved companion diagnostic guiding the use of immune checkpoint inhibitors in uterine cervical carcinoma (CXC). The clinical and genomic features of PD-L1-positive (PD-L1positive) CXC have not been previously described. We reviewed the clinicopathologic and molecular features of 647 CXC cases that were tested using DAKO 22C3 PD-L1 IHC and comprehensive genomic profiling during the course of clinical care. PD-L1positive cases were defined via a combined positive score of ≥ 1. No differences were found in age, genetic ancestry, and HPV status of the PD-L1positive (n = 548) and PD-L1negative disease subset. The PD-L1 positivity rate varied by histologic subtype of CXC with squamous cell carcinoma (SCC) having a PD-L1 positivity rate of 91% (397/437) and usual-type adenocarcinoma's PD-L1 positivity rate being 60% (35/58). In addition, the PD-L1 positivity rate varied depending on site of the specimen with 89.1% (261/293) positivity rate observed in cervix specimens compared to 25% (2/8) in brain metastases specimens. No significant difference in tumor mutational burden (TMB), microsatellite instability, and CD274 (encoding PD-L1) amplification was observed between PD-L1positive and PD-L1negative CXC subsets. By combining TMB with PD-L1, an additional 17 patients are eligible for pembrolizumab when compared to PD-L1 testing alone. TERT promoter alterations and APOBEC mutational signature were enriched in the PD-L1positive CXC SCC (p = 0.011, and p = 0.004, respectively). Our study reveals important prevalence data on PD-L1 positivity in CXC non-SCC and suggests that further studies in these histologic subtypes are warranted. In addition, we also provide a key framework to guide both specimen selection and future investigations of predictors of immunotherapy response in cervical cancer patients. Lastly, TERT promoter alterations and APOBEC mutational signature may be a biologically unique subset of PD-L1positive CXC SCC.


Subject(s)
B7-H1 Antigen , Carcinoma , Adult , Aged , Female , Humans , Middle Aged , Retrospective Studies , Uterine Cervical Neoplasms
11.
Cancer ; 124(20): 4080-4089, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30204251

ABSTRACT

BACKGROUND: Advances in deep sequencing technology have uncovered a widespread, protumorigenic role of guanine nucleotide-binding (G protein) α (GNA) subunits, particularly GNA subunits Gs (GNAS), Gq (GNAQ), and G11 (GNA11) (GNA*), in a diverse collection of malignancies. The objectives of the current study were: 1) to determine GNA* aberration status in a cohort of 1348 patients with cancer and 2) to examine tumor mutational burden, overall survival rates, and treatment outcomes in patients with GNA*-positive tumors versus those with tumors that had wild-type GNA*. METHODS: For each patient, clinical and genomic data were collected from medical records. Next-generation sequencing was performed for each patient (range, 182-236 genes). RESULTS: Aberrations of GNA* genes were identified in a subset of patients who had 8 of the 12 cancer types examined, and a significant association was observed for appendiceal cancer and ocular melanoma (P < .0001 for both; multivariate analysis). Overall, 4.1% of the cancer population was affected. GNA* abnormalities were associated with higher numbers of co-alterations in univariate (but not multivariate) analysis and were most commonly accompanied by Aurora kinase A (AURKA), Cbl proto-oncogene (CBL), and LYN proto-oncogene (LYN) co-alterations (all P < .0001; multivariate analysis). GNA* alterations were correlated with a trend toward lower median overall survival (P = .085). The median tumor mutational burden was 4 mutations per megabase in both GNA*-altered and GNA* wild-type tumors. For this limited sample of GNA*-positive patients, longer survival was not correlated with any specific treatment regimens. CONCLUSIONS: In the current sample, the genes GNAS, GNAQ, and GNA11 were widely altered across cancer types, and these alterations often were accompanied by specific genomic abnormalities in AURKA, CBL, and LYN. Therefore, targeting GNA* alterations may require drugs that address the GNA* signal and important co-alterations. Cancer 2018;00:000-000. © 2018 American Cancer Society.


Subject(s)
Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits/genetics , Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis/methods , Female , Genetic Association Studies , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Mutation , Neoplasms/classification , Neoplasms/mortality , Proto-Oncogene Mas , Retrospective Studies , Young Adult
12.
JCO Precis Oncol ; 8: e2300411, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38394466

ABSTRACT

PURPOSE: Recent studies have provided evidence for a predictive value of RNF43 genetic alterations (GAs) as biomarkers for targeted therapies in microsatellite-stable (MSS) colorectal cancer (CRC). These data have the potential to prioritize treatment strategies in patients with BRAFV600E-mutant CRC and help to identify a subgroup that is more likely to derive benefit versus those patients for whom alternative treatment approaches are needed. We were therefore interested in defining the precise frequency of BRAFV600E and RNF43 GAs and their respective overlap in a large cohort of patients with CRC. METHODS: To address this question, we performed a retrospective analysis that included 52,969 patients diagnosed with CRC from the FoundationCORE database. RESULTS: We observed a striking association of RNF43 GAs with MSI and tumor mutational burden status and BRAFV600E mutations. Overall, 23% of MSS patients with confirmed BRAFV600E mutation harbor an RNF43 GA-which accounts for 1.1% of all patients with CRC and for 15.7% of all CRC BRAFV600E cases. CONCLUSION: Ongoing phase III clinical trials, such as BREAKWATER, should aim to incorporate broader genetic profiling to further validate the superior sensitivity of patients with RNF43-mutant, MSS BRAFV600E CRC to anti-EGFR-/BRAFi-based therapies.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Microsatellite Instability , Mutation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics
13.
JAMA Netw Open ; 7(5): e249840, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709532

ABSTRACT

Importance: Biliary tract cancers (BTCs) contain several actionable molecular alterations, including FGFR2, IDH1, ERBB2 (formerly HER2), and KRAS. KRAS allelic variants are found in 20% to 30% of BTCs, and multiple KRAS inhibitors are currently under clinical investigation. Objectives: To describe the genomic landscape, co-sequence variations, immunophenotype, genomic ancestry, and survival outcomes of KRAS-mutated BTCs and to calculate the median overall survival (mOS) for the most common allelic variants. Design, Setting, and Participants: This retrospective, multicenter, pooled cohort study obtained clinical and next-generation sequencing data from multiple databases between January 1, 2017, and December 31, 2022. These databases included Princess Margaret Cancer Centre, MD Anderson Cancer Center, Foundation Medicine, American Association for Cancer Research Project GENIE, and cBioPortal for Cancer Genomics. The cohort comprised patients with BTCs who underwent genomic testing. Main Outcome and Measure: The main outcome was mOS, defined as date of diagnosis to date of death, which was measured in months. Results: A total of 7457 patients (n = 3773 males [50.6%]; mean [SD] age, 63 [5] years) with BTCs and genomic testing were included. Of these patients, 5813 had clinical outcome data available, in whom 1000 KRAS-mutated BTCs were identified. KRAS allelic variants were highly prevalent in perihilar cholangiocarcinoma (28.6%) and extrahepatic cholangiocarcinoma (36.1%). Thirty-six KRAS allelic variants were identified, and the prevalence rates in descending order were G12D (41%), G12V (23%), and Q61H (8%). The variant G12D had the highest mOS of 25.1 (95% CI, 22.0-33.0) months compared with 22.8 (95% CI, 19.6-31.4) months for Q61H and 17.8 (95% CI, 16.3-23.1) months for G12V variants. The majority of KRAS-mutated BTCs (98.9%) were not microsatellite instability-high and had low tumor mutational burden (ranging from a median [IQR] of 1.2 (1.2-2.5) to a mean [SD] of 3.3 [1.3]). Immune profiling through RNA sequencing of KRAS and NRAS-mutated samples showed a pattern toward a more immune-inflamed microenvironment with higher M1 macrophage activation (0.16 vs 0.12; P = .047) and interferon-γ expression compared with wild-type tumors. The G12D variant remained the most common KRAS allelic variant in all patient ancestries. Patients with admixed American ancestry had the highest proportion of G12D variant (45.0%). Conclusions and Relevance: This cohort study found that KRAS allelic variants were relatively common and may be potentially actionable genomic alterations in patients with BTCs, especially perihilar cholangiocarcinoma and extrahepatic cholangiocarcinoma. The findings add to the growing data on genomic and immune landscapes of KRAS allelic variants in BTCs and are potentially of value to the planning of specific therapies for this heterogeneous patient group.


Subject(s)
Alleles , Biliary Tract Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Male , Female , Middle Aged , Proto-Oncogene Proteins p21(ras)/genetics , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/mortality , Retrospective Studies , Aged , Mutation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/mortality
14.
JCO Precis Oncol ; 8: e2300544, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547421

ABSTRACT

PURPOSE: Isocitrate dehydrogenase (IDH)1/2 genomic alterations (GA) occur in 20% of intrahepatic cholangiocarcinoma (iCCA); however, the immunogenomic landscape of IDH1-/2-mutated iCCA is largely unknown. METHODS: Comprehensive genomic profiling (CGP) was performed on 3,067 cases of advanced iCCA. Tumor mutational burden (TMB), PD-L1 expression (Dako 22C3), microsatellite instability (MSI), and genomic loss of heterozygosity (gLOH) as a surrogate marker for homologous recombination deficiency were examined. RNA sequencing of 73 patient samples was analyzed for differences in stromal/immune cell infiltration, immune marker expression, and T-cell inflammation. Tissue microarray arrays were subjected to multiplex immunohistochemistry and colocalization analysis in 100 surgical samples. Retrospective clinical data were collected for 501 patients with cholangiocarcinoma to examine median overall survival (mOS) in IDH1/2+ versus IDHwt. RESULTS: Of 3,067 iCCA cases subjected to CGP, 426 (14%) were IDH1+ and 125 (4%) were IDH2+. IDH1 GA included R132C (69%) and R132L/G/S/H/F (16%/7%/4%/3%/<1%). IDH2 GA occurred at R172 (94.4%) and R140 (6.6%). No significant difference was seen in median gLOH between IDH1+ versus IDHwt iCCA (P = .37), although patterns of comutations differed. MSI-High (P = .009), TMB ≥10 mut/Mb (P < .0001), and PD-L1 positivity were lower in IDH1/2+ versus IDHwt iCCA. Resting natural killer cell population, CD70, and programmed cell death 1 expression were significantly higher in non-IDH1-mutated cases, whereas V-set domain containing T-cell activation inhibitor 1 (B7-H4) expression was significantly higher in IDH1+. No significant difference in mOS was observed between IDH1/2+ versus IDHwt patients. CONCLUSION: Significant differences in GA and immune biomarkers are noted between IDH1/2+ and IDHwt iCCA. IDH1-/2-mutated tumors appear immunologically cold without gLOH. These immunogenomic data provide insight for precision targeting of iCCA with IDH alterations.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Isocitrate Dehydrogenase , Humans , B7-H1 Antigen/genetics , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Isocitrate Dehydrogenase/genetics , Mutation , Retrospective Studies
15.
JCO Precis Oncol ; 8: e2300535, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295321

ABSTRACT

PURPOSE: Studies have investigated the early use of liquid biopsy (LBx) during the diagnostic workup of patients presenting with clinical evidence of advanced lung cancer, but real-world adoption and impact has not been characterized. The aim of this study was to determine whether the use of LBx before diagnosis (Dx; LBx-Dx) enables timely comprehensive genomic profiling (CGP) and shortens time until treatment initiation for advanced non-small-cell lung cancer (aNSCLC). MATERIALS AND METHODS: This study used the Flatiron Health-Foundation Medicine electronic health record-derived deidentified clinicogenomic database of patients with aNSCLC from approximately 280 US cancer clinics. RESULTS: Of 1,076 patients with LBx CGP ordered within 30 days prediagnosis/postdiagnosis, we focused on 56 (5.2%) patients who ordered LBx before diagnosis date (median 8 days between order and diagnosis, range, 1-28). Compared with 1,020 patients who ordered LBx after diagnosis (Dx-LBx), LBx-Dx patients had similar stage and ctDNA tumor fraction (TF). LBx-Dx patients received CGP results a median of 1 day after Dx versus 25 days for Dx-LBx patients. Forty-three percent of LBx-Dx were positive for an National Comprehensive Cancer Network driver, and 32% had ctDNA TF >1% but were driver negative (presumed true negatives). In 748 patients with previously untreated aNSCLC, median time from Dx to therapy was shorter in the LBx-Dx versus Dx-LBx group (21 v 35 days; P < .001). CONCLUSION: Early LBx in anticipation of pathologic diagnosis of aNSCLC was uncommon in this real-world cohort, yet this emerging paradigm was associated with an abbreviated time to CGP results and faster therapy initiation. Forthcoming prospective studies will clarify the utility of LBx in parallel with biopsy for diagnostic confirmation for patients presenting with suspected advanced lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Prospective Studies , Liquid Biopsy , Time-to-Treatment
16.
NPJ Precis Oncol ; 8(1): 207, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289482

ABSTRACT

Genomic alterations in fibroblast growth factor receptor (FGFR) genes are present in a small number of metastatic pancreatic ductal adenocarcinomas (PDAC) and may represent an emerging subgroup of patients likely to benefit from FGFR targeted therapies. Here we present four FGFR2 fusion-positive metastatic PDAC patients who exhibited durable responses or disease control to FGFR kinase inhibitors. Utilizing our custom FGFR focused cell-free DNA assay, FGFR-Dx, we serially monitored variant allele fractions of FGFR2 fusions during FGFR inhibitor treatment and observed dynamic changes correlating with clinical responses. Genomic analysis of 30,229 comprehensively profiled pancreatic cancers revealed FGFR1-3 fusions in 245 cases, an incidence of 0.81%. FGFR fusions were generally mutually exclusive from other known oncogenes. Our findings provide clinical evidence for identifying and treating FGFR2 fusion-positive PDAC patients with FGFR targeted therapy.

17.
Nepal J Epidemiol ; 13(4): 1294-1297, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38299042

ABSTRACT

Nanoparticles (NPs) are small particles with a surface area ranging from 1 to 100 nm in diameter that are rampantly used in different fields, e.g., medicine, engineering, and others. Because of their unique properties, such as their tiny size, magnetic properties, quantum size effects, and macroscopic quantum tunnelling effects, they are crucial for a wide range of potential applications. NPs play a significant role in the treatment of vascular disorders, the production of vaccines, and the development of drug carriers for diverse therapies due to their bioavailability, targeting ability, and efficacy. However, significant risks to the environment and health are also associated with it. NPs cause necrotic plasma membrane rupture or apoptosis, which leads to cell death. NPs interfere with cell signalling, endosomal membranes, and organelles like the nucleus or mitochondria, affecting their function. NPs cause autophagic cell death, which causes a stress response and sterile inflammation. The primary routes for the entry of NPs into the human body are inhalation, ingestion, and skin contact. NPs accumulate in the respiratory system based on their size, shape, and surface properties. NPs can cause lung inflammation and fibrosis, disrupt the endocrine system by attaching to hormone receptors, and produce reactive oxygen species (ROS) associated with DNA damage, oligospermia, and male infertility. Carcinogenic properties of NPs cause mutations, apoptosis, and inflammatory responses. Collaborative research between ecologists and epidemiologists may enlighten ways to reduce the harmful effects of NPs.

18.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36849197

ABSTRACT

PD-L1 (CD274) amplification occurs in a small subset of malignancies and may predict anti-PD-1/PD-L1 immunotherapy responsiveness. We hypothesized that both copy number (CN) and focality of cancer-related PD-L1 amplifications impact protein expression, and, thus, analyzed solid tumors that underwent comprehensive genomic profiling between March 2016 and February 2022 at Foundation Medicine. PD-L1 CN alterations were detected using a comparative genomic hybridization-like method. PD-L1 CN changes were correlated with PD-L1 protein expression (DAKO 22C3 antibody) by immunohistochemistry (IHC). Overall, 60,793 samples were analyzed (most frequent histologies: lung adenocarcinoma (20%), colon adenocarcinoma (12%), lung squamous carcinoma (8%)). Using a definition of CD274 CN ≥ specimen ploidy +4 (6 copies), 1.21% of tumors (738/60,793) were PD-L1 amplified. Focality category distribution was as follows: <0.1 mB (n=18 (2.4%)), ≥0.1 to <4 mB (n=230 (31.1%)), ≥4 to <20 mB (n=310 (42%)), ≥20mB (n=180 (24.4%)). Lower levels of PD-L1 amplification (below specimen ploidy +4) were more frequently non-focal amplifications compared to higher levels. In addition, more focal amplification (<0.1 mB) correlated with higher PD-L1 IHC expression. Median tumor proportion score (TPS) for samples with PD-L1 amplification (ploidy ≥+4) according to focality were 87.5% (<0.1 mB), 80% (≥0.1 to <4 mB), 40% (≥4 to <20 mB), 1% (≥20mB). In specimens with PD-L1 ploidy less than +4, but highly focal (<0.1 mB), the 75th percentile of PD-L1 expression by TPS was 80%. Conversely, non-focal (≥20 mB) PD-L1 amplification (ploidy ≥+4) can present high PD-L1 expression (TPS≥50%), albeit infrequently (0.09% of our cohort). In conclusion, PD-L1 expression measured by IHC is influenced by PD-L1 amplification level and focality. Further correlation between amplification, focality, protein expression and therapeutic outcome for PD-L1 and other targetable genes warrants exploration.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Lung Neoplasms , Humans , B7-H1 Antigen/genetics , Comparative Genomic Hybridization , Gene Amplification , Lung Neoplasms/genetics
19.
NPJ Precis Oncol ; 7(1): 103, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821580

ABSTRACT

The DNA damage response (DDR) pathway regulates DNA repair and cell survival, and inactivating mutations in DDR genes can increase tumour mutational burden (TMB), a predictive biomarker of treatment benefit from anti-PD-1/PD-L1 immunotherapies. However, a better understanding of the relationship among specific DDR mutations, TMB and PD-L1 expression is needed to improve translational strategies. Here, we determined genomic alteration frequencies in selected DDR genes that are clinically actionable biomarkers and investigated their association with TMB and PD-L1 in bladder, colorectal, non-small cell lung, ovarian and prostate cancers using the FoundationInsights® web portal. Our results not only confirm known associations, such as mismatch repair and POLE gene mutations with high TMB, but also identify significant associations between mutations in the SWI/SNF chromatin remodelling genes ARID1A and SMARCA4 and high TMB in multiple tumour types. Mutations in the ATR gene were associated with high TMB in colorectal and prostate cancers; however, associations between individual DDR mutations and high PD-L1 expression were uncommon and tumour-type specific. Finally, we found that high TMB and high PD-L1 expression were poorly associated, emphasising their independence as predictive biomarkers for immune checkpoint inhibitor use.

20.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36650021

ABSTRACT

BACKGROUND: For patients with advanced non-small cell lung carcinoma (NSCLC), immune checkpoint inhibitor (ICPI) and chemotherapy (chemo) ICPI represent two distinct first-line standard-of-care regimens without clear and established biomarkers to inform the optimal choice for individual patients. Here, we examined the complementary roles of tumor mutational burden (TMB) and programmed death ligand-1 (PD-L1) immunohistochemistry (IHC) to inform first-line therapy using a large real-world (rw) data set. MATERIALS AND METHODS: The study included patients with NSCLC from an rw de-identified clinico-genomic database. All patients underwent genomic testing using Foundation Medicine's tissue comprehensive genomic profiling assay and PD-L1 IHC assay scored for tumor cell staining (TS). RESULTS: Of 2165 patients included in the analysis, 150 exhibited durable benefit from first-line ICPI regimens (these patients were enriched for PD-L1 TS ≥50, non-squamous histology, and TMB ≥20 mutations/megabase (muts/Mb)). Comparing low TMB (<10 muts/Mb), high TMB (10-19 muts/Mb), and very high TMB (≥20 muts/Mb) receiving ICPI alone, we observed a stepwise increase in median rwPFS (real world-progression free survival) (6.5, 7.5, 17.2 months) and rwOS (real world-overall survival) (10.1, 11.8, 26.9 months) as TMB increased. In the low PD-L1 (TS <50%) cohort, TMB <20 muts/Mb showed a more favorable rwPFS (HR: 0.56 (95% CI: 0.40 to 0.79)) and rwOS (HR 0.74 (95% CI: 0.58 to 0.96)) on chemoICPI when compared with ICPI alone while the point estimate in rwPFS favored monoICPI in the TMB ≥20 muts/Mb cohort, the CI is wide and does not reach statistical significance (HR: 1.68 (95% CI: 0.52 to 5.48)). CONCLUSION: This study provides evidence that higher TMB cut-offs, such as 20 muts/Mb, can identify patients with prolonged benefit from ICPI. TMB ≥20 muts/Mb is a potential biomarker that may identify patients in whom an ICPI without chemo could be considered, even in the setting of lower PD-L1 levels. Prospective validation of these findings could increase access to chemo-sparing regimens for the first-line treatment of advanced NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen , Mutation , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL