Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Immunol ; 189(3): 1467-79, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22745376

ABSTRACT

The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , DNA Transposable Elements/immunology , Endogenous Retroviruses/immunology , AIDS Vaccines/genetics , Adult , Amino Acid Sequence , Animals , Cancer Vaccines/genetics , DNA Transposable Elements/genetics , Disease Models, Animal , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
2.
J Clin Invest ; 122(12): 4473-89, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143309

ABSTRACT

The genetic diversity of HIV-1 represents a major challenge in vaccine development. In this study, we establish a rationale for eliminating HIV-1-infected cells by targeting cellular immune responses against stable human endogenous retroviral (HERV) antigens. HERV DNA sequences in the human genome represent the remnants of ancient infectious retroviruses. We show that the infection of CD4+ T cells with HIV-1 resulted in transcription of the HML-2 lineage of HERV type K [HERV-K(HML-2)] and the expression of Gag and Env proteins. HERV-K(HML-2)-specific CD8+ T cells obtained from HIV-1-infected human subjects responded to HIV-1-infected cells in a Vif-dependent manner in vitro. Consistent with the proposed mode of action, a HERV-K(HML-2)-specific CD8+ T cell clone exhibited comprehensive elimination of cells infected with a panel of globally diverse HIV-1, HIV-2, and SIV isolates in vitro. We identified a second T cell response that exhibited cross-reactivity between homologous HIV-1-Pol and HERV-K(HML-2)-Pol determinants, raising the possibility that homology between HIV-1 and HERVs plays a role in shaping, and perhaps enhancing, the T cell response to HIV-1. This justifies the consideration of HERV-K(HML-2)-specific and cross-reactive T cell responses in the natural control of HIV-1 infection and for exploring HERV-K(HML-2)-targeted HIV-1 vaccines and immunotherapeutics.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Endogenous Retroviruses/physiology , HIV-1/physiology , HIV-2/physiology , Immunity, Cellular , Simian Immunodeficiency Virus/physiology , Amino Acid Sequence , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Endogenous Retroviruses/immunology , Endogenous Retroviruses/metabolism , Gene Expression Regulation, Viral , Gene Products, gag/genetics , Gene Products, gag/immunology , Gene Products, gag/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/isolation & purification , HIV-2/immunology , HIV-2/isolation & purification , Host-Pathogen Interactions , Humans , Molecular Sequence Data , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/isolation & purification , Transcriptional Activation , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virus Integration , Virus Internalization , vif Gene Products, Human Immunodeficiency Virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL