Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Arch Pharm (Weinheim) ; 357(3): e2300583, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38110703

ABSTRACT

Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.


Subject(s)
Biphenyl Compounds , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Ligands , Structure-Activity Relationship , Benzimidazoles/pharmacology , Water
2.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893521

ABSTRACT

The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein.


Subject(s)
B7-H1 Antigen , Molecular Docking Simulation , Programmed Cell Death 1 Receptor , Protein Binding , Terphenyl Compounds , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , B7-H1 Antigen/chemistry , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/chemistry , Humans , Terphenyl Compounds/chemistry , Terphenyl Compounds/pharmacology , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Binding Sites
3.
Mol Cancer ; 22(1): 150, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679783

ABSTRACT

Recent advances in immuno-oncology have opened up new and impressive treatment options for cancer. Notwithstanding, overcoming the limitations of the current FDA-approved therapies with monoclonal antibodies (mAbs) that block the PD-1/PD-L1 pathway continues to lead to the testing of multiple approaches and optimizations. Recently, a series of macrocyclic peptides have been developed that exhibit binding strengths to PD-L1 ranging from sub-micromolar to micromolar. In this study, we present the most potent non-antibody-based PD-1/PD-L1 interaction inhibitor reported to date. The structural and biological characterization of this macrocyclic PD-L1 targeting peptide provides the rationale for inhibition of both PD-1/PD-L1 and CD80/PD-L1 complexes. The IC50 and EC50 values obtained in PD-L1 binding assays indicate that the pAC65 peptide has potency equivalent to the current FDA-approved mAbs and may have similar activity to the BMS986189 peptide, which entered the clinical trial and has favorable safety and pharmacokinetic data. The data presented here delineate the generation of similar peptides with improved biological activities and applications not only in the field of cancer immunotherapy but also in other disorders related to the immune system.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , Antibodies, Monoclonal/pharmacology , Immune Checkpoint Inhibitors , Peptides/pharmacology
4.
Cell Commun Signal ; 20(1): 10, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35057808

ABSTRACT

BACKGROUND: A universal adaptor protein, MyD88, orchestrates the innate immune response by propagating signals from toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R). Receptor activation seeds MyD88 dependent formation of a signal amplifying supramolecular organizing center (SMOC)-the myddosome. Alternatively spliced variant MyD88S, lacking the intermediate domain (ID), exhibits a dominant negative effect silencing the immune response, but the mechanistic understanding is limited. METHODS: Luciferase reporter assay was used to evaluate functionality of MyD88 variants and mutants. The dimerization potential of MyD88 variants and myddosome nucleation process were monitored by co-immunoprecipitation and confocal microscopy. The ID secondary structure was characterized in silico employing I-TASSER server and in vitro using nuclear magnetic resonance (NMR) and circular dichroism (CD). RESULTS: We show that MyD88S is recruited to the nucleating SMOC and inhibits its maturation by interfering with incorporation of additional components. Biophysical analysis suggests that important functional role of ID is not supported by a well-defined secondary structure. Mutagenesis identifies Tyr116 as the only essential residue within ID required for myddosome nucleation and signal propagation (NF-κB activation). CONCLUSIONS: Our results argue that the largely unstructured ID of MyD88 is not only a linker separating toll-interleukin-1 receptor (TIR) homology domain and death domain (DD), but contributes intermolecular interactions pivotal in MyD88-dependent signaling. The dominant negative effect of MyD88S relies on quenching the myddosome nucleation and associated signal transduction. Video abstract.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Myeloid Differentiation Factor 88/metabolism , Cell Line , Humans , Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Myeloid Differentiation Factor 88/genetics , Protein Structure, Tertiary , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Toll-Like Receptors/metabolism
5.
Molecules ; 27(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35164334

ABSTRACT

Thiohydantoin and quinolone derivatives have attracted researchers' attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid compounds were synthesized. Both series consisted of 2-thiohydantoin core and 2-quinolone derivative ring, however one of them was enriched with an acetic acid group at N3 atom in 2-thiohydantoin core. Antibacterial properties of these compounds were examined against bacteria: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The antimicrobial assay was carried out using a serial dilution method to obtain the MIC. The influence of blue light irradiation on the tested compounds was investigated. The relative yield of singlet oxygen (1O2*, 1Δg) generation upon excitation with 420 nm was determined by a comparative method, employing perinaphthenone (PN) as a standard. Antimicrobial properties were also investigated after blue light irradiation of the suspensions of the hybrids and bacteria placed in microtitrate plates. Preliminary results confirmed that some of the hybrid compounds showed bacteriostatic activity to the reference Gram-positive bacterial strains and a few of them were bacteriostatic towards Gram-negative bacteria, as well. Blue light activation enhanced bacteriostatic effect of the tested compounds.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Quinolones/chemistry , Thiohydantoins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents , Light , Microbial Sensitivity Tests , Molecular Structure , Phenalenes/pharmacology , Pseudomonas aeruginosa , Structure-Activity Relationship
6.
Org Biomol Chem ; 19(27): 6045-6058, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34137394

ABSTRACT

New bioorthogonal cycloaddition of 5-arylidene derivatives of 1,3-dimethylbarbituric acid as 1-oxa-1,3-butadienes and vinyl thioether as a dienophile has been applied to imaging inside living cells. The reaction is high yielding, selective, and fast in aqueous media. The proposed 1-oxa-1,3-butadiene derivative conjugated to a FITC fluorochrome selectively and rapidly labels the cancer cells pretreated with the dienophile-taxol. The second order rate constants k2 for various proposed bioorthogonal cycloadditions were estimated to be in the range from 0.9 × 10-2 M-1 s-1 to 1.4 M-1 s-1, which is much better than in the case of the first generation TQ-ligation (o-quinolinone quinone methide and vinyl thioether ligation, k2 = 1.5 × 10-3 M-1 s-1) and comparable or better to that for the second generation TQ-ligation (k2 = 2.8 × 10-2 M-1 s-1). The reaction rate constants k2 of proposed ligation reactions are in the range of the rate constants k2 for tetrazines and norbornenes or tetrazines and cyclopropenes. These findings indicate that this chemistry is suitable for in vitro imaging experiments.


Subject(s)
Sulfides
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34769226

ABSTRACT

Targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) interaction has become an established strategy for cancer immunotherapy. Although hundreds of small-molecule, peptide, and peptidomimetic inhibitors have been proposed in recent years, only a limited number of drug candidates show good PD-1/PD-L1 blocking activity in cell-based assays. In this article, we compare representative molecules from different classes in terms of their PD-1/PD-L1 dissociation capacity measured by HTRF and in vitro bioactivity determined by the immune checkpoint blockade (ICB) co-culture assay. We point to recent discoveries that underscore important differences in the mechanisms of action of these molecules and also indicate one principal feature that needs to be considered, which is the eventual human PD-L1 specificity.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors , Peptidomimetics , Animals , B7-H1 Antigen/metabolism , CHO Cells , Cricetulus , Drug Evaluation , Humans , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Jurkat Cells , Peptidomimetics/chemistry , Peptidomimetics/pharmacology
8.
Molecules ; 26(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34443436

ABSTRACT

The clinical success of PD-1/PD-L1 immune checkpoint targeting antibodies in cancer is followed by efforts to develop small molecule inhibitors with better penetration into solid tumors and more favorable pharmacokinetics. Here we report the crystal structure of a macrocyclic peptide inhibitor (peptide 104) in complex with PD-L1. Our structure shows no indication of an unusual bifurcated binding mode demonstrated earlier for another peptide of the same family (peptide 101). The binding mode relies on extensive hydrophobic interactions at the center of the binding surface and an electrostatic patch at the side. An interesting sulfur/π interaction supports the macrocycle-receptor binding. Overall, our results allow a better understanding of forces guiding macrocycle affinity for PD-L1, providing a rationale for future structure-based inhibitor design and rational optimization.


Subject(s)
B7-H1 Antigen/metabolism , Immune Checkpoint Proteins/metabolism , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Peptides/chemistry , Peptides/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Animals , CHO Cells , Cricetulus , Humans , Jurkat Cells , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding
9.
Molecules ; 25(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630327

ABSTRACT

Screening for small-molecule fragments that can lead to potent inhibitors of protein-protein interactions (PPIs) is often a laborious step as the fragments cannot dissociate the targeted PPI due to their low µM-mM affinities. Here, we describe an NMR competition assay called w-AIDA-NMR (weak-antagonist induced dissociation assay-NMR), which is sensitive to weak µM-mM ligand-protein interactions and which can be used in initial fragment screening campaigns. By introducing point mutations in the complex's protein that is not targeted by the inhibitor, we lower the effective affinity of the complex, allowing for short fragments to dissociate the complex. We illustrate the method with the compounds that block the Mdm2/X-p53 and PD-1/PD-L1 oncogenic interactions. Targeting the PD-/PD-L1 PPI has profoundly advanced the treatment of different types of cancers.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Magnetic Resonance Spectroscopy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , B7-H1 Antigen/metabolism , Humans , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism
10.
Molecules ; 24(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374878

ABSTRACT

CA-170 is currently the only small-molecule modulator in clinical trials targeting PD-L1 and VISTA proteins - important negative checkpoint regulators of immune activation. The reported therapeutic results to some extent mimic those of FDA-approved monoclonal antibodies overcoming the limitations of the high production costs and adverse effects of the latter. However, no conclusive biophysical evidence proving the binding to hPD-L1 has ever been presented. Using well-known in vitro methods: NMR binding assay, HTRF and cell-based activation assays, we clearly show that there is no direct binding between CA-170 and PD-L1. To strengthen our reasoning, we performed control experiments on AUNP-12 - a 29-mer peptide, which is a precursor of CA-170. Positive controls consisted of the well-documented small-molecule PD-L1 inhibitors: BMS-1166 and peptide-57.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Immunotherapy , Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , B7 Antigens/antagonists & inhibitors , B7 Antigens/chemistry , B7-H1 Antigen/chemistry , Humans , Magnetic Resonance Spectroscopy , Neoplasms/immunology , Protein Binding/drug effects
11.
Angew Chem Int Ed Engl ; 56(36): 10725-10729, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28691783

ABSTRACT

The design and synthesis of head-to-tail linked artificial macrocycles using the Ugi-reaction has been developed. This synthetic approach of just two steps is unprecedented, short, efficient and works over a wide range of medium (8-11) and macrocyclic (≥12) loop sizes. The substrate scope and functional group tolerance is exceptional. Using this approach, we have synthesized 39 novel macrocycles by two or even one single synthetic operation. The properties of our macrocycles are discussed with respect to their potential to bind to biological targets that are not druggable by conventional, drug-like compounds. As an application of these artificial macrocycles we highlight potent p53-MDM2 antagonism.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure
12.
Angew Chem Int Ed Engl ; 56(44): 13732-13735, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28881104

ABSTRACT

Blockade of the immunoinhibitory PD-1/PD-L1 pathway using monoclonal antibodies has shown impressive results with durable clinical antitumor responses. Anti-PD-1 and anti-PD-L1 antibodies have now been approved for the treatment of a number of tumor types, whereas the development of small molecules targeting immune checkpoints lags far behind. We characterized two classes of macrocyclic-peptide inhibitors directed at the PD-1/PD-L1 pathway. We show that these macrocyclic compounds act by directly binding to PD-L1 and that they are capable of antagonizing PD-L1 signaling and, similarly to antibodies, can restore the function of T-cells. We also provide the crystal structures of two of these small-molecule inhibitors bound to PD-L1. The structures provide a rationale for the checkpoint inhibition by these small molecules, and a description of their small molecule/PD-L1 interfaces provides a blueprint for the design of small-molecule inhibitors of the PD-1/PD-L1 pathway.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/drug effects , B7-H1 Antigen/immunology , Drug Discovery , Humans , Jurkat Cells , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Molecular Docking Simulation , Programmed Cell Death 1 Receptor/immunology , Protein Interaction Maps/drug effects , T-Lymphocytes/immunology
13.
J Org Chem ; 80(18): 9231-9, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26317238

ABSTRACT

Conformational processes that occur in hexahydrobenzazocines have been studied with the (1)H and (13)C dynamic nuclear magnetic resonance (DNMR) spectroscopy. The coalescence effects are assigned to two different conformational processes: the ring-inversion of the ground-state conformations and the interconversion between two different conformers. The barriers for these processes are in the range of 42-52 and 42-43 kJ mol(-1), respectively. Molecular modeling on the density functional theory (DFT) level and the gauge invariant atomic orbitals (GIAO)-DFT calculations of isotropic shieldings and coupling constants for the set of low-energy conformations were compared with the experimental NMR data. The ground-state of all compounds in solution is the boat-chair (BC) conformation. The BC form adopts two different conformations because the nitrogen atom can be in the boat or chair parts of the BC structure. These two conformers are engaged in the interconversion process.

14.
Inorg Chem ; 54(17): 8423-35, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26290959

ABSTRACT

Analysis of the spectral properties and structural differences of two turn-on ratiometric fluorescent receptors for Zn(2+) and Cd(2+) ions, derivatives of pyrrolo[2,3-b]quinoxaline (2), and earlier published 3 (Ostrowska et al. CrystEngComm 2015, 17, 498-502) was performed. Both ligands are E/Z push-pull olefins interconverting at room temperature, with barriers to rotation about enamine double bonds, from E to Z isomers of 19.3 ± 0.1 and 16.9 ± 0.3 kcal/mol and from Z to E of 16.9 ± 0.3 and 15.7 ± 0.2 kcal/mol, respectively. Diastereoisomers (E)-2 and (Z)-2 were isolated and characterized by X-ray structural analysis. The formation of complexes by (E/Z)-2 with acetates and acetylacetonates of Zn(2+) and Cd(2+) was monitored by UV-vis, fluorescence, and (1)H NMR titrations in acetonitrile, respectively. X-ray structural analysis for isolated [(E)-2]2Zn in relation to earlier published (E)-3-ZnOAc revealed the formation of a six-coordinated zinc ion with six- and four-membered bis-chelate rings by (E)-2. The chelate effect increases the ligand affinity for Zn(2+) (log ß12 = 12.45) and causes the elongation of nitrogen-metal bonds. Extension of the coordination cavity size allows coordination of a cadmium ion. The introduction of a flexible ethylene linker between the fluorophore and ionophore pyridyl groups in 3 significantly affects the selectivity of zinc-ion recognition. The distorted tetrahedral geometry of (E)-3-ZnOAc with a four-coordinated zinc ion appears to be the most preferred because of the short donor-zinc distance with a 1:1 binding mode. The formation of the small coordination cavity size with six-membered bis-chelate rings provides an effective overlap of zinc and donor orbitals, precluding the coordination of a cadmium ion in the same manner as zinc.


Subject(s)
Chelating Agents/chemistry , Fluorescence , Pyridines/chemistry , Zinc/analysis , Crystallography, X-Ray , Ions/analysis , Models, Molecular , Molecular Structure , Particle Size , Pyridines/chemical synthesis , Quinoxalines/chemistry
15.
ACS Med Chem Lett ; 15(6): 828-836, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38894909

ABSTRACT

Therapeutic antibodies directed against either programmed cell death-1 protein (PD-1) or its ligand PD-L1 have demonstrated efficacy in the treatment of various cancers. In contrast with antibodies, small molecules have the potential for increased tissue penetration; better pharmacology; and therefore, improved antitumor activity. A series of nonsymmetric C2 inhibitors were synthesized and evaluated for PD-1/PD-L1 interaction inhibition. These compounds induced PD-L1 dimerization and effectively blocked PD-L1/PD-1 interaction in a homogeneous time-resolved fluorescence (HTRF) assay with most inhibitors exhibiting IC50 values in the single-digit nM range and below. Their high inhibitory potency was also demonstrated in a cell-based coculture PD-1 signaling assay where 2 exhibited an EC50 inhibitory activity of 21.8 nM, which approached that of the PD-L1 antibody durvalumab (EC50 = 0.3-1.8 nM). Structural insight into how these inhibitors interact with PD-L1 was gained by using NMR and X-ray cocrystal structure studies. These data support further preclinical evaluation of these compounds as antibody alternatives.

16.
RSC Med Chem ; 15(4): 1210-1215, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665826

ABSTRACT

The progress in cancer survival and treatment has witnessed a remarkable transformation through the innovative approach of targeting the inhibitory immune checkpoint protein PD-1/PD-L1 complex by mAbs, e.g. pembrolizumab (Keytruda). While generating 17.2 billion U.S. dollars in revenue in 2021, the true significance of these developments lies in their ability to enhance cancer patient outcomes. Despite the proven efficacy of mAbs in inhibiting the PD-1/PD-L1 signaling pathways, they face significant challenges, including limited response rates, high production costs, missing oral bioavailability, and extended half-lives that can lead to immune-related adverse effects. A promising alternative approach involves the use of small molecules acting as PD-1/PD-L1 antagonists to stimulate PD-L1 dimerization. However, the precise mechanisms of action of these molecules remain partially understood, posing challenges to their development. In this context, our research focuses on the creation of a novel scaffold based on the Ugi tetrazole four-component reaction (UT-4CR) to develop low-molecular-weight inhibitors of PD-L1. Employing structure-based methods, we synthesized a library of small compounds using biphenyl vinyl isocyanide, leading to the discovery of a structure-activity relationship among 1,5-disubstituted tetrazole-based inhibitors. Supported by a cocrystal structure with PD-L1, these inhibitors underwent biophysical testing, including HTRF and protein NMR experiments, resulting in the identification of potent candidates with sub-micromolar PD-L1 affinities. This finding opens opportunities to the further development of a new class of PD-L1 antagonists, holding promise for improved cancer immunotherapy strategies.

17.
ACS Med Chem Lett ; 15(1): 36-44, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38229762

ABSTRACT

Although heavily studied, the subject of anti-PD-L1 small-molecule inhibitors is still elusive. Here we present a systematic overview of the principles behind successful anti-PD-L1 small-molecule inhibitor design on the example of the m-terphenyl scaffold, with a particular focus on the neglected influence of the solubilizer tag on the overall affinity toward PD-L1. The inhibitor developed according to the proposed guidelines was characterized through its potency in blocking PD-1/PD-L1 complex formation in homogeneous time-resolved fluorescence and cell-based assays. The affinity is also explained based on the crystal structure of the inhibitor itself and its costructure with PD-L1 as well as a molecular modeling study. Our results structuralize the knowledge related to the strong pharmacophore feature of the m-terphenyl scaffold preferential geometry and the more complex role of the solubilizer tag in PD-L1 homodimer stabilization.

18.
Sci Rep ; 13(1): 15213, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709859

ABSTRACT

Late recurrence of atrial fibrillation (LRAF) in the first year following catheter ablation is a common and significant clinical problem. Our study aimed to create a machine-learning model for predicting arrhythmic recurrence within the first year since catheter ablation. The study comprised 201 consecutive patients (age: 61.8 ± 8.1; women 36%) with paroxysmal, persistent, and long-standing persistent atrial fibrillation (AF) who underwent cryoballoon (61%) and radiofrequency ablation (39%). Five different supervised machine-learning models (decision tree, logistic regression, random forest, XGBoost, support vector machines) were developed for predicting AF recurrence. Further, SHapley Additive exPlanations were derived to explain the predictions using 82 parameters based on clinical, laboratory, and procedural variables collected from each patient. The models were trained and validated using a stratified fivefold cross-validation, and a feature selection was performed with permutation importance. The XGBoost model with 12 variables showed the best performance on the testing cohort, with the highest AUC of 0.75 [95% confidence interval 0.7395, 0.7653]. The machine-learned model, based on the easily available 12 clinical and laboratory variables, predicted LRAF with good performance, which may provide a valuable tool in clinical practice for better patient selection and personalized AF strategy following the procedure.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Radiofrequency Ablation , Humans , Female , Middle Aged , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Machine Learning , Supervised Machine Learning
19.
J Med Chem ; 66(15): 10579-10603, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37496104

ABSTRACT

Novel 2-arylmethoxy-4-(2,2'-dihalogen-substituted biphenyl-3-ylmethoxy) benzylamine derivatives were designed, synthesized, and evaluated in vitro and in vivo against cancers as PD-1/PD-L1 inhibitors. Through the computer-aided structural optimization and the homogeneous time-resolved fluorescence (HTRF) assay, compound A56 was found to most strongly block the PD-1/PD-L1 interaction with an IC50 value of 2.4 ± 0.8 nM and showed the most potent activity. 1H NMR titration results indicated that A56 can tightly bind to the PD-L1 protein with KD < 1 µM. The X-ray diffraction data for the cocrystal structure of the A56/PD-L1 complex (3.5 Å) deciphered a novel binding mode in detail, which can account for its most potent inhibitory activity. Cell-based assays further demonstrated the strong ability of A56 as an hPD-1/hPD-L1 blocker. Especially in an hPD-L1 MC38 humanized mouse model, A56 significantly inhibited tumor growth without obvious toxicity, with a TGI rate of 55.20% (50 mg/kg, i.g.). In conclusion, A56 is a promising clinical candidate worthy of further development.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Animals , Mice , B7-H1 Antigen , Benzylamines/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/pharmacology
20.
J Med Chem ; 66(23): 15715-15727, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38039505

ABSTRACT

Here, we report the fragment-based drug discovery of potent and selective fragments that disrupt the Spire2-FMN2 but not the Spire1-FMN2 interaction. Hit fragments were identified in a differential scanning fluorimetry-based screen of an in-house library of 755 compounds and subsequently validated in multiple orthogonal biophysical assays, including fluorescence polarization, microscale thermophoresis, and 1H-15N HSQC nuclear magnetic resonance. Extensive structure-activity relationships combined with molecular docking followed by chemical optimization led to the discovery of compound 13, which exhibits micromolar potency and high ligand efficiency (LE = 0.38). Therefore, this fragment represents a validated starting point for the future development of selective chemical probes targeting the Spire2-FMN2 interaction.


Subject(s)
Drug Discovery , Molecular Docking Simulation , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL