Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Am J Hum Genet ; 109(9): 1667-1679, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055213

ABSTRACT

African populations are the most diverse in the world yet are sorely underrepresented in medical genetics research. Here, we examine the structure of African populations using genetic and comprehensive multi-generational ethnolinguistic data from the Neuropsychiatric Genetics of African Populations-Psychosis study (NeuroGAP-Psychosis) consisting of 900 individuals from Ethiopia, Kenya, South Africa, and Uganda. We find that self-reported language classifications meaningfully tag underlying genetic variation that would be missed with consideration of geography alone, highlighting the importance of culture in shaping genetic diversity. Leveraging our uniquely rich multi-generational ethnolinguistic metadata, we track language transmission through the pedigree, observing the disappearance of several languages in our cohort as well as notable shifts in frequency over three generations. We find suggestive evidence for the rate of language transmission in matrilineal groups having been higher than that for patrilineal ones. We highlight both the diversity of variation within Africa as well as how within-Africa variation can be informative for broader variant interpretation; many variants that are rare elsewhere are common in parts of Africa. The work presented here improves the understanding of the spectrum of genetic variation in African populations and highlights the enormous and complex genetic and ethnolinguistic diversity across Africa.


Subject(s)
Genetic Variation , Genetics, Population , Africa, Southern , Black People/genetics , Genetic Structures , Genetic Variation/genetics , Humans
2.
Am J Hum Genet ; 108(4): 656-668, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33770507

ABSTRACT

Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5-1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.


Subject(s)
DNA Mutational Analysis/economics , DNA Mutational Analysis/standards , Genetic Variation/genetics , Genetics, Population/economics , Africa , DNA Mutational Analysis/methods , Genetics, Population/methods , Genome, Human/genetics , Genome-Wide Association Study , Health Equity , Humans , Microbiota , Whole Genome Sequencing/economics , Whole Genome Sequencing/standards
3.
bioRxiv ; 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39282356

ABSTRACT

We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4× mean depth) and deep whole exome (30-40× mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R 2 concordance ≥95% among SNPs with MAF≥1%, and never fell below ≥90% R 2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF≥1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ~90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.

SELECTION OF CITATIONS
SEARCH DETAIL