Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 42(21): e113928, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37712288

ABSTRACT

To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Insulin , Animals , Mice , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gene Expression , Glucose , Lysosomes/metabolism
2.
PLoS Biol ; 21(3): e3002034, 2023 03.
Article in English | MEDLINE | ID: mdl-36888606

ABSTRACT

The stress-responsive transcription factor EB (TFEB) is a master controller of lysosomal biogenesis and autophagy and plays a major role in several cancer-associated diseases. TFEB is regulated at the posttranslational level by the nutrient-sensitive kinase complex mTORC1. However, little is known about the regulation of TFEB transcription. Here, through integrative genomic approaches, we identify the immediate-early gene EGR1 as a positive transcriptional regulator of TFEB expression in human cells and demonstrate that, in the absence of EGR1, TFEB-mediated transcriptional response to starvation is impaired. Remarkably, both genetic and pharmacological inhibition of EGR1, using the MEK1/2 inhibitor Trametinib, significantly reduced the proliferation of 2D and 3D cultures of cells displaying constitutive activation of TFEB, including those from a patient with Birt-Hogg-Dubé (BHD) syndrome, a TFEB-driven inherited cancer condition. Overall, we uncover an additional layer of TFEB regulation consisting in modulating its transcription via EGR1 and propose that interfering with the EGR1-TFEB axis may represent a therapeutic strategy to counteract constitutive TFEB activation in cancer-associated conditions.


Subject(s)
Autophagy , Lysosomes , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy/genetics , Lysosomes/metabolism , Cell Proliferation/genetics , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
3.
EMBO J ; 38(12)2019 06 17.
Article in English | MEDLINE | ID: mdl-31126958

ABSTRACT

Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Circadian Clocks , Energy Metabolism , Nutrients/physiology , Animals , Autophagy/drug effects , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Binding Sites , Cells, Cultured , Circadian Clocks/drug effects , Circadian Clocks/genetics , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/physiology , Nutrients/pharmacology , Transcription Factors/drug effects , Transcription Factors/genetics , Transcription Factors/physiology
4.
J Biol Chem ; 296: 100138, 2021.
Article in English | MEDLINE | ID: mdl-33268382

ABSTRACT

The Yes-associated protein (YAP), one of the major effectors of the Hippo pathway together with its related protein WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ), mediates a range of cellular processes from proliferation and death to morphogenesis. YAP and WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ) regulate a large number of target genes, acting as coactivators of DNA-binding transcription factors or as negative regulators of transcription by interacting with the nucleosome remodeling and histone deacetylase complexes. YAP is expressed in self-renewing embryonic stem cells (ESCs), although it is still debated whether it plays any crucial roles in the control of either stemness or differentiation. Here we show that the transient downregulation of YAP in mouse ESCs perturbs cellular homeostasis, leading to the inability to differentiate properly. Bisulfite genomic sequencing revealed that this transient knockdown caused a genome-wide alteration of the DNA methylation remodeling that takes place during the early steps of differentiation, suggesting that the phenotype we observed might be due to the dysregulation of some of the mechanisms involved in regulation of ESC exit from pluripotency. By gene expression analysis, we identified two molecules that could have a role in the altered genome-wide methylation profile: the long noncoding RNA ephemeron, whose rapid upregulation is crucial for the transition of ESCs into epiblast, and the methyltransferase-like protein Dnmt3l, which, during the embryo development, cooperates with Dnmt3a and Dnmt3b to contribute to the de novo DNA methylation that governs early steps of ESC differentiation. These data suggest a new role for YAP in the governance of the epigenetic dynamics of exit from pluripotency.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Mouse Embryonic Stem Cells/cytology , Adaptor Proteins, Signal Transducing/genetics , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Signal Transduction , YAP-Signaling Proteins , DNA Methyltransferase 3B
5.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955786

ABSTRACT

Acute lymphoblastic leukemia type B (B-ALL) is the most common kind of pediatric leukemia, characterized by the clonal proliferation of type B lymphoid stem cells. Important progress in ALL treatments led to improvements in long-term survival; nevertheless, many adverse long-term consequences still concern the medical community. Molecular and cellular target therapies, together with immunotherapy, are promising strategies to overcome these concerns. Cannabinoids, enzymes involved in their metabolism, and cannabinoid receptors type 1 (CB1) and type 2 (CB2) constitute the endocannabinoid system, involved in inflammation, immune response, and cancer. CB2 receptor stimulation exerts anti-proliferative and anti-invasive effects in many tumors. In this study, we evaluated the effects of CB2 stimulation on B-ALL cell lines, SUP-B15, by RNA sequencing, Western blotting, and ELISA. We observe a lower expression of CB2 in SUP-B15 cells compared to lymphocytes from healthy subjects, hypothesizing its involvement in B-ALL pathogenesis. CB2 stimulation reduces the expression of CD9, SEC61G, TBX21, and TMSB4X genes involved in tumor growth and progression, and also negatively affects downstream intracellular pathways. Our findings suggest an antitumor role of CB2 stimulation in B-ALL, and highlight a functional correlation between CB2 receptors and specific anti-tumoral pathways, even though further investigations are needed.


Subject(s)
Burkitt Lymphoma , Cannabinoids , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Blotting, Western , Cannabinoids/pharmacology , Child , Gene Expression , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , SEC Translocation Channels/metabolism
6.
BMC Genomics ; 20(1): 307, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31014245

ABSTRACT

BACKGROUND: Protein kinases are enzymes controlling different cellular functions. Genetic alterations often result in kinase dysregulation, making kinases a very attractive class of druggable targets in several human diseases. Existing approved drugs still target a very limited portion of the human 'kinome', demanding a broader functional knowledge of individual and co-expressed kinase patterns in physiologic and pathologic settings. The development of novel rapid and cost-effective methods for kinome screening is therefore highly desirable, potentially leading to the identification of novel kinase drug targets. RESULTS: In this work, we describe the development of KING-REX (KINase Gene RNA EXpression), a comprehensive kinome RNA targeted custom assay-based panel designed for Next Generation Sequencing analysis, coupled with a dedicated data analysis pipeline. We have conceived KING-REX for the gene expression analysis of 512 human kinases; for 319 kinases, paired assays and custom analysis pipeline features allow the evaluation of 3'- and 5'-end transcript imbalances as readout for the prediction of gene rearrangements. Validation tests on cell line models harboring known gene fusions demonstrated a comparable accuracy of KING-REX gene expression assessment as in whole transcriptome analyses, together with a robust detection of transcript portion imbalances in rearranged kinases, even in complex RNA mixtures or in degraded RNA. CONCLUSIONS: These results support the use of KING-REX as a rapid and cost effective kinome investigation tool in the field of kinase target identification for applications in cancer biology and other human diseases.


Subject(s)
Gene Expression Profiling/methods , Protein Kinases/genetics , Gene Fusion , High-Throughput Nucleotide Sequencing , Protein Kinases/metabolism , RNA Stability
7.
Hum Mol Genet ; 26(1): 33-43, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28013292

ABSTRACT

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.


Subject(s)
Cardiomyopathies/pathology , Gastritis, Hypertrophic/pathology , Mutation, Missense/genetics , Receptors, Notch/metabolism , Stomach Diseases/pathology , Ubiquitin-Protein Ligases/genetics , Ventricular Dysfunction, Left/pathology , Animals , Animals, Newborn , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Case-Control Studies , Cells, Cultured , Exome/genetics , Female , Gastritis, Hypertrophic/etiology , Gastritis, Hypertrophic/metabolism , Gene Expression Regulation , Humans , Male , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pedigree , Phenotype , Rats , Receptors, Notch/genetics , Signal Transduction , Stomach Diseases/etiology , Stomach Diseases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism
8.
Mol Ther ; 26(2): 524-541, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29292161

ABSTRACT

Retinal gene transfer with adeno-associated viral (AAV) vectors holds great promise for the treatment of inherited retinal degenerations (IRDs). One limit of AAV is its transfer capacity of about 5 kb, which can be expanded to about 9 kb, using dual AAV vectors. This strategy would still not suffice for treatment of IRDs such as Usher syndrome type 1D or Alström syndrome type I (ALMS) due to mutations in CDH23 or ALMS1, respectively. To overcome this limitation, we generated triple AAV vectors, with a maximal transfer capacity of about 14 kb. Transcriptomic analysis following triple AAV transduction showed the expected full-length products along a number of aberrant transcripts. However, only the full-length transcripts are efficiently translated in vivo. We additionally showed that approximately 4% of mouse photoreceptors are transduced by triple AAV vectors and showed correct localization of recombinant ALMS1. The low-photoreceptor transduction levels might justify the modest and transient improvement we observe in the retina of a mouse model of ALMS. However, the levels of transduction mediated by triple AAV vectors in pig retina reached 40% of those observed with single vectors, and this bodes well for further improving the efficiency of triple AAV vectors in the retina.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Recombination, Genetic , Retina/metabolism , Transduction, Genetic , Animals , Cadherins/genetics , Cadherins/metabolism , Gene Expression , Gene Expression Regulation, Viral , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Mice , Mice, Knockout , Swine , Transcription, Genetic , Transgenes
9.
Nucleic Acids Res ; 44(4): 1525-40, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26819412

ABSTRACT

MicroRNAs play a fundamental role in retinal development and function. To characterise the miRNome of the human retina, we carried out deep sequencing analysis on sixteen individuals. We established the catalogue of retina-expressed miRNAs, determined their relative abundance and found that a small number of miRNAs accounts for almost 90% of the retina miRNome. We discovered more than 3000 miRNA variants (isomiRs), encompassing a wide range of sequence variations, which include seed modifications that are predicted to have an impact on miRNA action. We demonstrated that a seed-modifying isomiR of the retina-enriched miR-124-3p was endowed with different targeting properties with respect to the corresponding canonical form. Moreover, we identified 51 putative novel, retina-specific miRNAs and experimentally validated the expression for nine of them. Finally, a parallel analysis of the human Retinal Pigment Epithelium (RPE)/choroid, two tissues that are known to be crucial for retina homeostasis, yielded notably distinct miRNA enrichment patterns compared to the retina. The generated data are accessible through an ad hoc database. This study is the first to reveal the complexity of the human retina miRNome at nucleotide resolution and constitutes a unique resource to assess the contribution of miRNAs to the pathophysiology of the human retina.


Subject(s)
MicroRNAs/genetics , Retina/metabolism , Transcriptome/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , MicroRNAs/isolation & purification , Retinal Pigment Epithelium/metabolism
10.
Nucleic Acids Res ; 44(12): 5773-84, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27235414

ABSTRACT

The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it).


Subject(s)
Eye Proteins/genetics , Gene Regulatory Networks , Genome, Human , Mitochondrial Proteins/genetics , Retina/metabolism , Transcriptome , Adult , Aged , Alternative Splicing , Atlases as Topic , Chromosome Mapping , Exons , Eye Proteins/metabolism , Female , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mitochondrial Proteins/metabolism , Molecular Sequence Annotation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Retina/cytology
11.
Genome Res ; 22(6): 1163-72, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22345618

ABSTRACT

MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFß pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFß signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs.


Subject(s)
Gene Regulatory Networks , Genomics/methods , MicroRNAs/genetics , Genome, Human , Humans , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism
12.
BMC Genomics ; 15 Suppl 3: S5, 2014.
Article in English | MEDLINE | ID: mdl-25078076

ABSTRACT

BACKGROUND: Mendelian disorders are mostly caused by single mutations in the DNA sequence of a gene, leading to a phenotype with pathologic consequences. Whole Exome Sequencing of patients can be a cost-effective alternative to standard genetic screenings to find causative mutations of genetic diseases, especially when the number of cases is limited. Analyzing exome sequencing data requires specific expertise, high computational resources and a reference variant database to identify pathogenic variants. RESULTS: We developed a database of variations collected from patients with Mendelian disorders, which is automatically populated thanks to an associated exome-sequencing pipeline. The pipeline is able to automatically identify, annotate and store insertions, deletions and mutations in the database. The resource is freely available online http://exome.tigem.it. The exome sequencing pipeline automates the analysis workflow (quality control and read trimming, mapping on reference genome, post-alignment processing, variation calling and annotation) using state-of-the-art software tools. The exome-sequencing pipeline has been designed to run on a computing cluster in order to analyse several samples simultaneously. The detected variants are annotated by the pipeline not only with the standard variant annotations (e.g. allele frequency in the general population, the predicted effect on gene product activity, etc.) but, more importantly, with allele frequencies across samples progressively collected in the database itself, stratified by Mendelian disorder. CONCLUSIONS: We aim at providing a resource for the genetic disease community to automatically analyse whole exome-sequencing samples with a standard and uniform analysis pipeline, thus collecting variant allele frequencies by disorder. This resource may become a valuable tool to help dissecting the genotype underlying the disease phenotype through an improved selection of putative patient-specific causative or phenotype-associated variations.


Subject(s)
Exome , Genetic Diseases, Inborn/genetics , Genetic Variation , Molecular Sequence Annotation , Software , Computational Biology/methods , Database Management Systems , Databases, Genetic , Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Polymorphism, Single Nucleotide , Web Browser , Workflow
13.
Cell Death Differ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965447

ABSTRACT

TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17ß-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.

14.
Nat Cell Biol ; 25(5): 643-657, 2023 05.
Article in English | MEDLINE | ID: mdl-37106060

ABSTRACT

During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.


Subject(s)
Embryonic Stem Cells , Pluripotent Stem Cells , Mice , Animals , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism , Germ Layers/metabolism , Germ Cells/metabolism , Receptors, Estrogen/metabolism
15.
BMC Genomics ; 12: 36, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21235772

ABSTRACT

BACKGROUND: Estrogen receptors alpha (ERα) and beta (ERß) are transcription factors (TFs) that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC). The two receptors can be found co-expressed and play specific, often opposite, roles, with ERß being able to modulate the effects of ERα on gene transcription and cell proliferation. ERß is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERß in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. RESULTS: Expression of full-length ERß in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERß and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERß, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERß+ vs ERß- cells, 424 showed one or more ERß site within 10 kb. These putative primary ERß target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERß binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. CONCLUSIONS: Results indicate that the vast majority of the genomic targets of ERß can bind also ERα, suggesting that the overall action of ERß on the genome of hormone-responsive BC cells depends mainly on the relative concentration of both ERs in the cell.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Neoplastic , Binding Sites/genetics , Cell Line, Tumor , Cell Proliferation , Chromatin Immunoprecipitation , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunoblotting , Oligonucleotide Array Sequence Analysis , Protein Binding/genetics
16.
Am J Pathol ; 176(5): 2113-30, 2010 May.
Article in English | MEDLINE | ID: mdl-20348243

ABSTRACT

Luminal-like breast tumor cells express estrogen receptor alpha (ERalpha), a member of the nuclear receptor family of ligand-activated transcription factors that controls their proliferation, survival, and functional status. To identify the molecular determinants of this hormone-responsive tumor phenotype, a comprehensive genome-wide analysis was performed in estrogen stimulated MCF-7 and ZR-75.1 cells by integrating time-course mRNA expression profiling with global mapping of genomic ERalpha binding sites by chromatin immunoprecipitation coupled to massively parallel sequencing, microRNA expression profiling, and in silico analysis of transcription units and receptor binding regions identified. All 1270 genes that were found to respond to 17beta-estradiol in both cell lines cluster in 33 highly concordant groups, each of which showed defined kinetics of RNA changes. This hormone-responsive gene set includes several direct targets of ERalpha and is organized in a gene regulation cascade, stemming from ligand-activated receptor and reaching a large number of downstream targets via AP-2gamma, B-cell activating transcription factor, E2F1 and 2, E74-like factor 3, GTF2IRD1, hairy and enhancer of split homologue-1, MYB, SMAD3, RARalpha, and RXRalpha transcription factors. MicroRNAs are also integral components of this gene regulation network because miR-107, miR-424, miR-570, miR-618, and miR-760 are regulated by 17beta-estradiol along with other microRNAs that can target a significant number of transcripts belonging to one or more estrogen-responsive gene clusters.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/physiology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Transcription Factors/metabolism , Binding Sites , Cell Line, Tumor , Chromatin Immunoprecipitation , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Humans , Kinetics , MicroRNAs/metabolism , Models, Biological , Oligonucleotide Array Sequence Analysis , RNA/metabolism
17.
Front Cell Dev Biol ; 9: 788117, 2021.
Article in English | MEDLINE | ID: mdl-34988080

ABSTRACT

Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population's response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate Hydra vulgaris, and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/ß-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.

18.
Epigenomics ; 12(10): 873-888, 2020 05.
Article in English | MEDLINE | ID: mdl-32483983

ABSTRACT

Aim: First-degree relatives (FDR) of individuals with Type 2 diabetes (T2D) feature restricted adipogenesis, which render them more vulnerable to T2D. Epigenetics may contribute to these abnormalities. Methods: FDR pre-adipocyte Methylome and Transcriptome were investigated by MeDIP- and RNA-Seq, respectively. Results:Methylome analysis revealed 2841 differentially methylated regions (DMR) in FDR. Most DMR localized into gene-body and were hypomethylated. The strongest hypomethylation signal was identified in an intronic-DMR at the PTPRD gene. PTPRD hypomethylation in FDR was confirmed by bisulphite sequencing and was responsible for its upregulation. Interestingly, Ptprd-overexpression in 3T3-L1 pre-adipocytes inhibited adipogenesis. Notably, the validated PTPRD-associated DMR was significantly hypomethylated in peripheral blood leukocytes from the same FDR individuals. Finally, PTPRD methylation pattern was also replicated in obese individuals. Conclusion: Our findings indicated a previously unrecognized role of PTPRD in restraining adipogenesis. This abnormality may contribute to increase FDR proclivity toward T2D.


Subject(s)
Adipogenesis/genetics , DNA Methylation , Diabetes Mellitus, Type 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , 3T3-L1 Cells , Adult , Animals , Epigenesis, Genetic , Female , Humans , Male , Mice
19.
J Cachexia Sarcopenia Muscle ; 11(1): 169-194, 2020 02.
Article in English | MEDLINE | ID: mdl-31647200

ABSTRACT

BACKGROUND: Myopalladin (MYPN) is a striated muscle-specific, immunoglobulin-containing protein located in the Z-line and I-band of the sarcomere as well as the nucleus. Heterozygous MYPN gene mutations are associated with hypertrophic, dilated, and restrictive cardiomyopathy, and homozygous loss-of-function truncating mutations have recently been identified in patients with cap myopathy, nemaline myopathy, and congenital myopathy with hanging big toe. METHODS: Constitutive MYPN knockout (MKO) mice were generated, and the role of MYPN in skeletal muscle was studied through molecular, cellular, biochemical, structural, biomechanical, and physiological studies in vivo and in vitro. RESULTS: MKO mice were 13% smaller compared with wild-type controls and exhibited a 48% reduction in myofibre cross-sectional area (CSA) and significantly increased fibre number. Similarly, reduced myotube width was observed in MKO primary myoblast cultures. Biomechanical studies showed reduced isometric force and power output in MKO mice as a result of the reduced CSA, whereas the force developed by each myosin molecular motor was unaffected. While the performance by treadmill running was similar in MKO and wild-type mice, MKO mice showed progressively decreased exercise capability, Z-line damage, and signs of muscle regeneration following consecutive days of downhill running. Additionally, MKO muscle exhibited progressive Z-line widening starting from 8 months of age. RNA-sequencing analysis revealed down-regulation of serum response factor (SRF)-target genes in muscles from postnatal MKO mice, important for muscle growth and differentiation. The SRF pathway is regulated by actin dynamics as binding of globular actin to the SRF-cofactor myocardin-related transcription factor A (MRTF-A) prevents its translocation to the nucleus where it binds and activates SRF. MYPN was found to bind and bundle filamentous actin as well as interact with MRTF-A. In particular, while MYPN reduced actin polymerization, it strongly inhibited actin depolymerization and consequently increased MRTF-A-mediated activation of SRF signalling in myogenic cells. Reduced myotube width in MKO primary myoblast cultures was rescued by transduction with constitutive active SRF, demonstrating that MYPN promotes skeletal muscle growth through activation of the SRF pathway. CONCLUSIONS: Myopalladin plays a critical role in the control of skeletal muscle growth through its effect on actin dynamics and consequently the SRF pathway. In addition, MYPN is important for the maintenance of Z-line integrity during exercise and aging. These results suggest that muscle weakness in patients with biallelic MYPN mutations may be associated with reduced myofibre CSA and SRF signalling and that the disease phenotype may be aggravated by exercise.


Subject(s)
Muscle Proteins/therapeutic use , Muscle, Skeletal/drug effects , Serum Response Factor/drug effects , Animals , Female , Humans , Mice , Mice, Knockout , Muscle Proteins/pharmacology
20.
Nat Commun ; 11(1): 2461, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424153

ABSTRACT

It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Lineage , Liver/cytology , Liver/physiology , Regeneration/physiology , Animals , Bile Duct Neoplasms/pathology , Bile Ducts/metabolism , Cell Differentiation , Cell Proliferation , Cholangiocarcinoma/pathology , Down-Regulation/genetics , Hepatocytes/cytology , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Phenotype , Promoter Regions, Genetic/genetics , Protein Binding , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Spheroids, Cellular/cytology , Stem Cells/cytology , Stem Cells/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL