Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Radiology ; 310(2): e230793, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319162

ABSTRACT

Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.


Subject(s)
Brain Neoplasms , Glioma , Meningeal Neoplasms , Meningioma , Adult , Humans , Child , Contrast Media , Gadolinium , Fantasy , Artificial Intelligence , Magnetic Resonance Imaging , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging
2.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502108

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Subject(s)
Brain , Cerebrovascular Circulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Male , Female , Adult , Algorithms
3.
Alzheimers Dement ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073684

ABSTRACT

INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.

4.
JAMA Netw Open ; 7(2): e2355380, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38334996

ABSTRACT

Importance: Weight loss induced by bariatric surgery (BS) is associated with improved cognition and changed brain structure; however, previous studies on the association have used small cohorts and short follow-up periods, making it difficult to determine long-term neurological outcomes associated with BS. Objective: To investigate long-term associations of weight loss after BS with cognition and brain structure and perfusion. Design, Setting, and Participants: This cohort study included participants from the Bariatric Surgery Rijnstate and Radboudumc Neuroimaging and Cognition in Obesity study. Data from participants with severe obesity (body mass index [BMI; calculated as weight in kilograms divided by height in meters squared] >40, or BMI >35 with comorbidities) eligible for Roux-en-Y gastric bypass and aged 35 to 55 years were enrolled from a hospital specialized in BS (Rijnstate Hospital, Arnhem, the Netherlands). Participants were recruited between September 2018 and December 2020 with follow-up till March 2023. Data were collected before BS and at 6 and 24 months after BS. Data were analyzed from March to November 2023. Exposure: Roux-en-Y gastric bypass. Main Outcomes and Measures: Primary outcomes included body weight, BMI, waist circumference, blood pressure, medication use, cognitive performance (20% change index of compound z-score), brain volumes, cortical thickness, cerebral blood flow (CBF), and spatial coefficient of variation (sCOV). Secondary outcomes include cytokines, adipokines, depressive symptoms (assessed using the Beck Depression Inventory), and physical activity (assessed using the Baecke Questionnaire). Results: A total of 133 participants (mean [SD] age, 46.8 [5.7] years; 112 [84.2%] female) were included. Global cognition was at least 20% higher in 52 participants (42.9%) at 24 months after BS. Compared with baseline, at 24 months, inflammatory markers were lower (mean [SD] high-sensitivity C-reactive protein: 4.77 [5.80] µg/mL vs 0.80 [1.09] µg/mL; P < .001), fewer patients used antihypertensives (48 patients [36.1%] vs 22 patients [16.7%]), and patients had lower depressive symptoms (median [IQR] BDI score: 9.0 [5.0-13.0] vs 3.0 [1.0-6.0]; P < .001) and greater physical activity (mean [SD] Baecke score: 7.64 [1.29] vs 8.19 [1.35]; P < .001). After BS, brain structure and perfusion were lower in most brain regions, while hippocampal and white matter volume remained stable. CBF and sCOV did not change in nucleus accumbens and parietal cortex. The temporal cortex showed a greater thickness (mean [SD] thickness: 2.724 [0.101] mm vs 2.761 [0.007] mm; P = .007) and lower sCOV (median [IQR] sCOV: 4.41% [3.83%-5.18%] vs 3.97% [3.71%-4.59%]; P = .02) after BS. Conclusions and Relevance: These findings suggest that BS was associated with health benefits 2 years after surgery. BS was associated with improved cognition and general health and changed blood vessel efficiency and cortical thickness of the temporal cortex. These results may improve treatment options for patients with obesity and dementia.


Subject(s)
Bariatric Surgery , Humans , Female , Middle Aged , Male , Cohort Studies , Obesity/surgery , Obesity/complications , Cognition , Brain/diagnostic imaging , Weight Loss
5.
Ann Clin Transl Neurol ; 11(6): 1541-1556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757392

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid ß1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.


Subject(s)
Alzheimer Disease , Cerebral Small Vessel Diseases , Diffusion Tensor Imaging , White Matter , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Male , White Matter/diagnostic imaging , White Matter/pathology , Aged , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Prospective Studies
6.
Front Aging Neurosci ; 16: 1382593, 2024.
Article in English | MEDLINE | ID: mdl-38784446

ABSTRACT

Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder characterized by diverse and prominent changes in behavior and personality. One of the greatest challenges in bvFTD is to capture, measure and predict its disease progression, due to clinical, pathological and genetic heterogeneity. Availability of reliable outcome measures is pivotal for future clinical trials and disease monitoring. Detection of change should be objective, clinically meaningful and easily assessed, preferably associated with a biological process. The purpose of this scoping review is to examine the status of longitudinal studies in bvFTD, evaluate current assessment tools and propose potential progression markers. A systematic literature search (in PubMed and Embase.com) was performed. Literature on disease trajectories and longitudinal validity of frequently-used measures was organized in five domains: global functioning, behavior, (social) cognition, neuroimaging and fluid biomarkers. Evaluating current longitudinal data, we propose an adaptive battery, combining a set of sensitive clinical, neuroimaging and fluid markers, adjusted for genetic and sporadic variants, for adequate detection of disease progression in bvFTD.

7.
BMJ Open ; 14(3): e081635, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458785

ABSTRACT

INTRODUCTION: Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS: DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION: Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Spin Labels , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Biomarkers , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL