Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Genet ; 20(3): e1011178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547071

ABSTRACT

C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , RNA, Small Interfering/genetics , RNA Interference , RNA, Bacterial/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacteria/genetics , Bacteria/metabolism
2.
J Mol Diagn ; 26(7): 599-612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38901927

ABSTRACT

The high disease burden of influenza virus poses a significant threat to human health. Optimized diagnostic technologies that combine speed, sensitivity, and specificity with minimal equipment requirements are urgently needed to detect the many circulating species, subtypes, and variants of influenza at the point of need. Here, we introduce such a method using Streamlined Highlighting of Infections to Navigate Epidemics (SHINE), a clustered regularly interspaced short palindromic repeats (CRISPR)-based RNA detection platform. Four SHINE assays were designed and validated for the detection and differentiation of clinically relevant influenza species (A and B) and subtypes (H1N1 and H3N2). When tested on clinical samples, these optimized assays achieved 100% concordance with quantitative RT-PCR. Duplex Cas12a/Cas13a SHINE assays were also developed to detect two targets simultaneously. This study demonstrates the utility of this duplex assay in discriminating two alleles of an oseltamivir resistance (H275Y) mutation as well as in simultaneously detecting influenza A and human RNAse P in patient samples. These assays have the potential to expand influenza detection outside of clinical laboratories for enhanced influenza diagnosis and surveillance.


Subject(s)
CRISPR-Cas Systems , Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , CRISPR-Cas Systems/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Molecular Diagnostic Techniques/methods , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification
3.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026836

ABSTRACT

Prime editing has emerged as a precise and powerful genome editing tool, offering a favorable gene editing profile compared to other Cas9-based approaches. Here we report new nCas9-DNA polymerase fusion proteins to create chimeric oligonucleotide-directed editing (CODE) systems for search-and-replace genome editing. Through successive rounds of engineering, we developed CODEMax and CODEMax(exo+) editors that achieve efficient genome modifications in human cells with low unintended edits. CODEMax and CODEMax(exo+) contain an engineered Bst DNA polymerase derivative known for its robust strand displacement ability. Additionally, CODEMax(exo+) features a 5' to 3' exonuclease activity that promotes effective strand invasion and repair outcomes favoring the incorporation of the desired edit. We demonstrate CODEs can perform small insertions, deletions, and substitutions with improved efficiency compared to PEMax at many loci. Overall, CODEs complement existing prime editors to expand the toolbox for genome manipulations without double-stranded breaks.

SELECTION OF CITATIONS
SEARCH DETAIL