ABSTRACT
Metal halide perovskites are semiconductors with many fascinating characteristics and their widespread use in optoelectronic devices has been expected. High-quality thin films and single crystals can be fabricated by simple chemical solution processes and their fundamental electrical, optical, and thermal properties can be changed significantly by compositional substitution, in particular halogen ions. In this perspective, we provide an overview of phonon and thermal properties of metal halide perovskites, which play a decisive role in determining device performance. After a brief introduction to fundamental material properties, longitudinal-optical phonons and unusual thermal properties of metal halide perovskites are discussed. Remarkably, they possess very low thermal conductivities and very large thermal expansion coefficients despite their crystalline nature. In line with these discussions, we present optical properties governed by the strong electron-phonon interactions and the unusual thermal properties. By showing their unique thermo-optic responses and novel application examples, we highlight some aspects of the unusual thermal properties.
ABSTRACT
The spatial profile of a beam can experience complicated reshaping after interacting with a planar resonator near resonant conditions. Previously, this phenomenon was recognized as the Goos-Hänchen effect, which only partially explains the experimental observations. In this Letter, we introduce a 2D model that can fully describe the resonance-induced spatial reshaping. The model predicts several general features of the output beam profile and suggests that optical phase or polarization vortices can be generated and manipulated by an arbitrary planar resonator. We validate our theoretical results with experimental measurements using terahertz spectroscopy.
ABSTRACT
The creation of artificial structures with very narrow spectral features in the terahertz range has been a long-standing goal, as they can enable many important applications. Unlike in the visible and infrared, where compact dielectric resonators can readily achieve a quality factor (Q) of 106, terahertz resonators with a Q of 103 are considered heroic. Here, we describe a new approach to this challenging problem, inspired by the phenomenon of extraordinary optical transmission (EOT) in 1D structures. In the well-studied EOT problem, a complex spectrum of resonances can be observed in transmission through a mostly solid metal structure. However, these EOT resonances can hardly exhibit extremely high Q, even in a perfect structure with lossless components. In contrast, we show that the inverse structure, a periodic array of very thin metal plates separated by air gaps, can exhibit non-trivial bound states in the continuum (BICs) reflection resonances, with arbitrarily high Q, and with peak reflectivity approaching 100% even for a vanishingly small metal filling fraction. Our analytical predictions are supported by numerical simulations, and also agree well with our experimental measurements. This configuration offers a new approach to achieving ultra-narrow optical resonances in the terahertz range, as well as a new experimentally accessible configuration for studying BICs.
ABSTRACT
We performed terahertz time-domain spectroscopy for methylammonium (MA) lead halide perovskite single crystals and characterized the longitudinal optical (LO) phonons directly. We found that the effective LO phonon wave number does not change in the wide temperature range between 10 and 300 K. However, the coupling between MA cation modes and the LO phonon mode derived from lead halide cages induces a mode splitting at low temperatures and a damping of the LO phonon mode at high temperatures. These results influence the interpretation of electron-LO phonon interactions in perovskite semiconductors, as well as the interpretations of mobility, carrier diffusion, and polaron formation.
ABSTRACT
Submilliradian accuracy utilizing terahertz waves is used to often discover and observe novel physical phenomena. However, conventional terahertz polarizers cannot simultaneously realize a high extinction ratio, which restricts the sensitivity of the polarization angle, and a high transmission power across a broad frequency band due to the wires involved. Here, inspired by metamaterials, we demonstrate an anisotropic cut-through metal-slit array for an ideal terahertz polarizer with a high extinction ratio and transmission power. Measurements confirm extinction ratios below approximately -50 dB and average transverse magnetic-mode transmission powers of over 80% from 0.3 to 2.2 THz. The extremely sensitive mechanism can shed light on a variety of path-breaking applications such as single-photon detection and quantum information and communication at lower frequencies.
ABSTRACT
We demonstrated an achromatic wave plate based on parallel metal plate waveguides in the high THz frequency region. The metal plates have periodic rough structures on the surface, which allow slow transverse magnetic wave propagation and fast transverse electric wave propagation. A numerical simulation showed that the height of the periodic roughness is important for optimizing the birefringence. We fabricated stacked metal plates containing two types of structures by chemical etching. An array of small pillars on the metal plates allows higher frequency optimization. We experimentally demonstrated an achromatic quarter-wave plate in the frequency region from 2.0 to 3.1 THz.
ABSTRACT
We propose a simple achromatic terahertz wave plate composed of stacked parallel metal plates with a hole array. It consists of an ensemble of designed parallel plate waveguides; the high and low propagation speeds of waves in TE and TM waveguide modes with the same group velocity cause a constant phase difference over a wide frequency region. Using that wave plate, we obtained intense single- and multi-cycle THz pulses with circular polarization.
ABSTRACT
We design and fabricate an artificial dielectric prism that can steer a terahertz beam in space and experimentally investigate its behavior. The artificial dielectric medium consists of a uniformly spaced stack of metal plates, electromagnetically equivalent to an array of parallel-plate waveguides operating in tandem. At an operating frequency of 0.3 THz, we observe a maximum beam deflection of 29°, limited by the precision of the available spacers. Spring-loading the spacers between the plates allow us to scan the beam continuously and dynamically over a range of 5°. The measured beam intensity maps at the input and output of the device reveal very good Gaussian beam quality and an estimated power efficiency of 71%. As a possible real-world application, we integrate the prism into the path of a free-space terahertz communication link and demonstrate unimpaired performance.
ABSTRACT
We experimentally demonstrate high-efficiency terahertz pulse generation via optical rectification in LiNbO3. The spectral broadening of an excitation pulse via the stimulated Raman scattering process coincides with high-efficiency terahertz pulse generation, which enhances undesired stretching of the excitation pulse owing to the very high group velocity dispersion in LiNbO3. We avoid this by the bandwidth control of the excitation pulse and achieve the highest reported efficiency of 0.21% for energy conversion into a THz pulse.
Subject(s)
Lasers , Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Spectrum Analysis, Raman/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure AnalysisABSTRACT
A novel technique for the terahertz (THz) tomography of a photo-induced carrier that is based on optical-pump THz-probe time-resolved reflection spectroscopy using counterpropagation geometry of the pump and probe pulses has been proposed. Transient reflection due to the photo-induced carrier provides information about the physical properties and spatial distribution separately. We have experimentally demonstrated this method using a silicon wafer. The obtained complex reflection can be reproduced by the exact solution of Maxwell's equations, assuming an exponential distribution of the photo-induced carrier density.
ABSTRACT
We demonstrated fast terahertz spectral computed tomography by using real-time line projection of a terahertz beam. Two types of cross-sectional images of continuously rotating samples have been measured in only a few seconds. From temporal data, a peak-to-peak sinogram and cross sections have been reconstructed using a filtered backprojection algorithm. Using fast Fourier transform from temporal data, spectral cross sections of the sample have been obtained.
ABSTRACT
We experimentally demonstrated 20 ladder climbing steps on the anharmonic intermolecular potential in the amino-acid microcrystals with an intense monocycle terahertz pulse. Absorption spectra show the suppression of the peak and enhancement of the low-frequency absorption for the incident electric field amplitude. These results are reproduced by simulations based on coherent transition processes between quantum levels in the anharmonic potential. The appearance of such nonlinearity allows us to control macroscopic motion via a phase-controlled terahertz pulse.
Subject(s)
Arginine/chemistry , Crystallization/methods , Light , Absorption , Electricity , Spectrum Analysis , Time FactorsABSTRACT
We demonstrate photoacoustic wave propagation with a plane wavefront in liquid water using a terahertz (THz) laser pulse. The THz light can effectively generate the photoacoustic wave in water because of strong absorption via a stretching vibration mode of the hydrogen bonding network. The excitation of a large-area water surface irradiated by loosely focused THz light produces a plane photoacoustic wave. This is in contrast with conventional methods using absorbers or plasma generation using near-infrared laser light. The photoacoustic wave generation and plane wave propagation are observed using a system with a THz free-electron laser and shadowgraph imaging. The plane photoacoustic wave is generated by incident THz light with a small radiant exposure of < 1 mJ/cm2 and delivered 600 times deeper than the penetration depth of THz light for water. The THz-light-induced plane photoacoustic wave offers great advantages to non-invasive operations for industrial and biological applications as demonstrated in our previous report (Yamazaki et al. in Sci Rep 10:9008, 2020).
ABSTRACT
We proposed a novel THz generation technique beyond the limitation of the input optical pulse width, based on phase modulation via cascaded chi((2)) process. When intense THz electric field generated by optical rectification lies in electro-optic (EO) crystal, emitted THz field gives phase modulation to the optical excitation pulse. The phase modulation causes excitation pulse narrowing and consequently gives rise to the enhancement of conversion efficiency and THz wave bandwidth broadening. We experimentally realize this generation technique with high chi((2)) EO crystal LiNbO(3) and with subpicosecond pulse from Yb-doped fiber laser. It opens new concept of THz technologies.
Subject(s)
Lasers , Niobium/chemistry , Optical Devices , Oxides/chemistry , Equipment Design , Light , Nonlinear Dynamics , Optics and Photonics , Spectrophotometry/methods , Terahertz Radiation , Time FactorsABSTRACT
Terahertz spectroscopy is one of the most suitable methods for the analysis of electron transport in solids, and has been applied to various materials. Here, we demonstrate that terahertz spectroscopy is the technique of choice to characterize solid electrolytes. We measure the terahertz conductivity of stabilized zirconia, a widely used solid electrolyte material, by terahertz time-domain spectroscopy at high temperatures, providing a wealth of information unavailable from conventional techniques. It is found that the conductivity reflects the microscopic motion of the ion just before hopping to an unoccupied site. Our results suggest a powerful approach in probing the ionic conduction mechanism and could help us explore other solid electrolytes for fuel cells and all-solid-state batteries.
ABSTRACT
We investigated surface phonon polariton in cesium iodide with terahertz time-domain attenuated total reflection method in Otto configuration, which gives us both information on amplitude and phase of surface electromagnetic mode directly. Systematic experiments with precise control of the distance between a prism and an active material show that the abrupt change of pi-phase jump appears sensitively under polariton picture satisfied when the local electric field at the interface becomes a maximum. This demonstration will open the novel phase-detection terahertz sensor using the active medium causing the strong enhancement of terahertz electric field.
Subject(s)
Cesium/chemistry , Iodides/chemistry , Microwaves , Models, Theoretical , Surface Plasmon Resonance/methods , Computer Simulation , Electromagnetic Fields , Infrared Rays , Light , Photons , Scattering, RadiationABSTRACT
We established a novel method to evaluate effective optical constants by terahertz (THz) time domain spectroscopy and suggested a strict definition of optical constants and an expression for electromagnetic energy loss following the second law of thermodynamics. We deduced the effective optical constants of phosphor bronze wire grids in the THz region experimentally and theoretically. The results depend strongly on the polarization of the THz waves. When the electric field is parallel to the wires, we observed Drude-like electric permittivities with a plasma frequency reduced by a factor of 10(-3), whereas when the field is perpendicular, the sample behaved as a simple dielectric film. We also observed unexpected magnetic permeabilities, which originate from the non-resonant real magnetic response of finite size-conductors.
Subject(s)
Algorithms , Magnetics , Materials Testing/methods , Metals/chemistry , Microwaves , Models, Chemical , Spectrum Analysis/methods , Computer Simulation , Electric ConductivityABSTRACT
We demonstrate a simple and effective strategy for implementing a polarizing beamsplitter for the terahertz spectral region, based on an artificial dielectric medium that is scalable to a range of desired frequencies. The artificial dielectric medium consists of a uniformly spaced stack of metal plates, which is electromagnetically equivalent to a stacked array of parallel-plate waveguides. The operation of the device relies on both the lowest-order, transverse-electric and transverse-magnetic modes of the parallel-plate waveguide. This is in contrast to previous work that relied solely on the transverse-electric mode. The fabricated polarizing beamsplitter exhibits extinction ratios as high as 42 dB along with insertion losses as low as 0.18 dB. Building on the same idea, we also demonstrate an isolator with non-reciprocal transmission, providing high isolation and low insertion loss at a select design frequency. The performance of our isolator far exceeds that of other experimentally demonstrated terahertz isolators, and indeed, even rivals that of commercially available isolators for optical wavelengths. Because these waveguide-based artificial dielectrics are low loss, inexpensive, and easy to fabricate, this approach offers a promising new route for polarization control of free-space terahertz beams.
ABSTRACT
We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 µm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.
ABSTRACT
We have investigated the dynamic optical properties of CH3NH3PbI3 (MAPbI3) perovskite thin films at low temperatures using time-resolved photoluminescence, optical transient absorption (TA), and THz TA spectroscopy. Optical spectroscopic results indicate that the high-temperature tetragonal phase still remains in the MAPbI3 thin films at low temperatures in addition to the major orthorhombic phase. The fast charge transfer from the orthorhombic phase to the tetragonal phase is likely to suppress the formation of excitons in the orthorhombic phase. Consequently, the near-band-edge optical responses of the photocarriers in both the tetragonal and orthorhombic phases of the MAPbI3 thin films are more accurately described by a free-carrier model, rather than an excitonic model even at low temperatures.