ABSTRACT
The utility of rhodamine B as a water-soluble organic photocatalyst was studied in the cascade radical addition-cyclization-trapping reactions under visible light irradiation. In the presence of (i-Pr)2NEt, the electron transfer from the excited rhodamine B to perfluoroalkyl iodides proceeded smoothly to promote the carbon-carbon bond-forming radical reactions in aqueous media. When i-C3F7I was employed as a radical precursor, the aqueous-medium radical reactions proceeded even in the absence of (i-Pr)2NEt. In these reactions, the direct electron transfer from the excited singlet state of rhodamine B would take place. Furthermore, the cleavage of the C-I bond in less reactive i-PrI could be achieved by the reductive electron transfer from the excited rhodamine B, which was confirmed by the fluorescence quenching of rhodamine B with the addition of i-PrI.