ABSTRACT
BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Mitogen-Activated Protein Kinases/metabolism , Smad3 Protein/metabolismABSTRACT
BACKGROUND: Osteoclast activation is a hallmark of breast cancer-induced bone disease while little is known about the role of osteoblasts in this process. Recently, we identified the homeodomain protein TG-interacting factor-1 (Tgif1) as a crucial regulator of osteoblast function. In this study, we demonstrate that lack of Tgif1 also restricts the progression of breast cancer bone metastases. METHODS: Transwell migration assays were used to investigate the osteoblast-breast cancer cell interaction in vitro. Molecular analyses included RNA sequencing, immunoblotting, and qRT-PCR. To determine the role of Tgif1 in metastatic bone disease, 4T1 breast cancer cells were injected intracardially into mice with a germ line deletion of Tgif1 (Tgif1-/-) or control littermates (Tgif1+/+). Progression of bone metastases and alterations in the bone microenvironment were assessed using bioluminescence imaging, immunofluorescence staining, confocal microscopy, and histomorphometry. RESULTS: Medium conditioned by osteoblasts stimulated breast cancer cell migration, indicating a potential role of osteoblasts during bone metastasis progression. Tgif1 expression was strongly increased in osteoblasts upon stimulation by breast cancer cells, demonstrating the implication of Tgif1 in the osteoblast-breast cancer cell interaction. Indeed, conditioned medium from osteoblasts of Tgif1-/- mice failed to induce breast cancer cell migration compared to control, suggesting that Tgif1 in osteoblasts augments cancer cell motility. Semaphorin 3E (Sema3E), which is abundantly secreted by Tgif1-/- osteoblasts, dose-dependently reduced breast cancer cell migration while silencing of Sema3E expression in Tgif1-/- osteoblasts partially restored the impaired migration. In vivo, we observed a decreased number of breast cancer bone metastases in Tgif1-/- mice compared to control littermates. Consistently, the presence of single breast cancer cells or micro-metastases in the tibiae was reduced in Tgif1-/- mice. Breast cancer cells localized in close proximity to Endomucin-positive vascular cells as well as to osteoblasts. Although Tgif1 deficiency did not affect the bone marrow vasculature, the number and activity of osteoblasts were reduced compared to control. This suggests that the protective effect on bone metastases might be mediated by osteoblasts rather than by the bone marrow vasculature. CONCLUSION: We propose that the lack of Tgif1 in osteoblasts increases Sema3E expression and attenuates breast cancer cell migration as well as metastases formation.
Subject(s)
Bone Neoplasms/prevention & control , Bone and Bones/pathology , Breast Neoplasms/prevention & control , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/physiology , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/physiology , Semaphorins/genetics , Tumor Microenvironment , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone and Bones/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Differentiation , Cell Line, Tumor , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteoblasts/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolismABSTRACT
Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-ß-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-ß-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of ß-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2-5 and GATA4 in stabilized-ß-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/ß-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing ß-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/ß-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway.
Subject(s)
Chromatin/genetics , GATA4 Transcription Factor/genetics , Heart Failure/genetics , Transcription Factor 7-Like 2 Protein/genetics , beta Catenin/genetics , Adult , Animals , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Disease Progression , GATA4 Transcription Factor/metabolism , Gene Expression Profiling , Heart Failure/metabolism , Heart Failure/pathology , Humans , Mice, Knockout , Mice, Transgenic , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Protein Binding , Transcription Factor 7-Like 2 Protein/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/metabolismABSTRACT
The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes. Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination.
Subject(s)
Cell Differentiation/physiology , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Cell Differentiation/genetics , Cells, Cultured , DNA Helicases/antagonists & inhibitors , DNA Helicases/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Histones/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , RNA Polymerase II/metabolism , RNA, Small Interfering/genetics , Transcription Initiation SiteABSTRACT
Bromodomain-containing protein 4 (BRD4) is a member of the bromo- and extraterminal (BET) domain-containing family of epigenetic readers which is under intensive investigation as a target for anti-tumor therapy. BRD4 plays a central role in promoting the expression of select subsets of genes including many driven by oncogenic transcription factors and signaling pathways. However, the role of BRD4 and the effects of BET inhibitors in non-transformed cells remain mostly unclear. We demonstrate that BRD4 is required for the maintenance of a basal epithelial phenotype by regulating the expression of epithelial-specific genes including TP63 and Grainy Head-like transcription factor-3 (GRHL3) in non-transformed basal-like mammary epithelial cells. Moreover, BRD4 occupancy correlates with enhancer activity and enhancer RNA (eRNA) transcription. Motif analyses of cell context-specific BRD4-enriched regions predicted the involvement of FOXO transcription factors. Consistently, activation of FOXO1 function via inhibition of EGFR-AKT signaling promoted the expression of TP63 and GRHL3. Moreover, activation of Src kinase signaling and FOXO1 inhibition decreased the expression of FOXO/BRD4 target genes. Together, our findings support a function for BRD4 in promoting basal mammary cell epithelial differentiation, at least in part, by regulating FOXO factor function on enhancers to activate TP63 and GRHL3 expression.
Subject(s)
Breast/metabolism , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Breast/cytology , Cell Cycle Proteins , Cell Line , DNA-Binding Proteins/biosynthesis , Enhancer Elements, Genetic , Forkhead Transcription Factors/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , RNA Polymerase II/metabolism , Signal Transduction , Transcription Factors/biosynthesis , Transcription, Genetic , Tumor Suppressor Proteins/biosynthesisABSTRACT
Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4.
Subject(s)
Cell Lineage/genetics , Epigenesis, Genetic , Epithelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/genetics , Osteoblasts/metabolism , Osteocytes/metabolism , Transcription Factors/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Cycle Proteins , Cell Differentiation , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/cytology , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Gene Expression Profiling , Humans , Mesenchymal Stem Cells/cytology , Nuclear Proteins/metabolism , Organ Specificity , Osteoblasts/cytology , Osteocytes/cytology , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors/metabolism , Transcription Initiation SiteABSTRACT
Cellular differentiation is accompanied by dramatic changes in chromatin structure which direct the activation of lineage-specific transcriptional programs. Structure-specific recognition protein-1 (SSRP1) is a histone chaperone which is important for chromatin-associated processes such as transcription, DNA replication and repair. Since the function of SSRP1 during cell differentiation remains unclear, we investigated its potential role in controlling lineage determination. Depletion of SSRP1 in human mesenchymal stem cells elicited lineage-specific effects by increasing expression of adipocyte-specific genes and decreasing the expression of osteoblast-specific genes. Consistent with a role in controlling lineage specification, transcriptome-wide RNA-sequencing following SSRP1 depletion and the induction of osteoblast differentiation revealed a specific decrease in the expression of genes involved in biological processes related to osteoblast differentiation. Importantly, we observed a specific downregulation of target genes of the canonical Wnt signaling pathway, which was accompanied by decreased nuclear localization of active ß-catenin. Together our data uncover a previously unknown role for SSRP1 in promoting the activation of the Wnt signaling pathway activity during cellular differentiation. Stem Cells 2016;34:1369-1376.
Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , Histone Chaperones/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Transcriptional Elongation Factors/metabolism , Wnt Signaling Pathway , Adipocytes/cytology , Adipocytes/metabolism , Cell Differentiation/genetics , Cell Line , Cell Nucleus/metabolism , Gene Deletion , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Protein Transport , Reproducibility of Results , Wnt Signaling Pathway/genetics , beta Catenin/metabolismABSTRACT
BACKGROUND & AIMS: Oncogenic mutations in KRAS contribute to the development of pancreatic ductal adenocarcinoma, but are not sufficient to initiate carcinogenesis. Secondary events, such as inflammation-induced signaling via the epidermal growth factor receptor (EGFR) and expression of the SOX9 gene, are required for tumor formation. Herein we sought to identify the mechanisms that link EGFR signaling with activation of SOX9 during acinar-ductal metaplasia, a transdifferentiation process that precedes pancreatic carcinogenesis. METHODS: We analyzed pancreatic tissues from Kras(G12D);pdx1-Cre and Kras(G12D);NFATc1(Δ/Δ);pdx1-Cre mice after intraperitoneal administration of caerulein, vs cyclosporin A or dimethyl sulfoxide (controls). Induction of EGFR signaling and its effects on the expression of Nuclear factor of activated T cells c1 (NFATc1) or SOX9 were investigated by quantitative reverse-transcription polymerase chain reaction, immunoblot, and immunohistochemical analyses of mouse and human tissues and acinar cell explants. Interactions between NFATc1 and partner proteins and effects on DNA binding or chromatin modifications were studied using co-immunoprecipitation and chromatin immunoprecipitation assays in acinar cell explants and mouse tissue. RESULTS: EGFR activation induced expression of NFATc1 in metaplastic areas from patients with chronic pancreatitis and in pancreatic tissue from Kras(G12D) mice. EGFR signaling also promoted formation of a complex between NFATc1 and C-JUN in dedifferentiating mouse acinar cells, leading to activation of Sox9 transcription and induction of acinar-ductal metaplasia. Pharmacologic inhibition of NFATc1 or disruption of the Nfatc1 gene inhibited EGFR-mediated induction of Sox9 transcription and blocked acinar-ductal transdifferentiation and pancreatic cancer initiation in mice. CONCLUSIONS: EGFR signaling induces expression of NFATc1 and Sox9, leading to acinar cell transdifferentiation and initiation of pancreatic cancer. Strategies designed to disrupt this pathway might be developed to prevent pancreatic cancer initiation in high-risk patients with chronic pancreatitis.
Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Cell Transdifferentiation , ErbB Receptors/metabolism , NFATC Transcription Factors/metabolism , Pancreas, Exocrine/metabolism , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/metabolism , Pancreatitis/metabolism , Precancerous Conditions/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/chemically induced , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Ceruletide , Cyclosporine , Disease Models, Animal , ErbB Receptors/genetics , Gene Expression Regulation , Humans , Male , Metaplasia , Mice, Inbred C57BL , Mice, Knockout , Mutation , NFATC Transcription Factors/deficiency , NFATC Transcription Factors/genetics , Pancreas, Exocrine/pathology , Pancreatic Ducts/pathology , Pancreatic Neoplasms/chemically induced , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/pathology , Precancerous Conditions/chemically induced , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/genetics , SOX9 Transcription Factor/genetics , Tissue Culture Techniques , Transcriptional ActivationABSTRACT
Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual's tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR-Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR-Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.
ABSTRACT
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Breast Neoplasms/genetics , Disease Progression , Enhancer Elements, Genetic , Humans , Transcription Factors/metabolismABSTRACT
Detecting low-abundance long noncoding RNAs (lncRNAs) is extremely difficult due to their expression levels. Deeper sequencing with extensive protocols is required to detect these RNAs and high-throughput screens to examine the regulation of these RNAs are challenging. This protocol provides a multiplexed and robust method of detecting low-abundance RNAs, with improved signal-to-noise ratio using RNAscope-based RNA-FISH which utilizes a series of amplification steps. We have validated this protocol for investigating the regulation of low-abundance lncRNAs, which would be ideal for in vitro screening in 96-well plates.
Subject(s)
High-Throughput Screening Assays/methods , Molecular Biology/methods , RNA, Long Noncoding/isolation & purification , Cells, Cultured , Humans , RNA, Long Noncoding/geneticsABSTRACT
The cytokine interleukin-6 (IL6) and its downstream effector STAT3 constitute a key oncogenic pathway, which has been thought to be functionally connected to estrogen receptor α (ER) in breast cancer. We demonstrate that IL6/STAT3 signaling drives metastasis in ER+ breast cancer independent of ER. STAT3 hijacks a subset of ER enhancers to drive a distinct transcriptional program. Although these enhancers are shared by both STAT3 and ER, IL6/STAT3 activity is refractory to standard ER-targeted therapies. Instead, inhibition of STAT3 activity using the JAK inhibitor ruxolitinib decreases breast cancer invasion in vivo. Therefore, IL6/STAT3 and ER oncogenic pathways are functionally decoupled, highlighting the potential of IL6/STAT3-targeted therapies in ER+ breast cancer.
Subject(s)
Breast Neoplasms/genetics , Enhancer Elements, Genetic/genetics , Estrogen Receptor alpha/genetics , Interleukin-6/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Animals , Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Estrogen Receptor alpha/metabolism , Female , Fulvestrant/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Interleukin-6/metabolism , Kaplan-Meier Estimate , MCF-7 Cells , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Metastasis , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays/methodsABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients.
Subject(s)
Breast Neoplasms/drug therapy , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Histone Deacetylase 1/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Proliferation , Clustered Regularly Interspaced Short Palindromic Repeats , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Histone Deacetylase 1/genetics , Humans , MCF-7 Cells , Mice, Inbred NOD , Transcription Factors/genetics , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND AND OBJECTIVE: Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder. Pancreatic ß-cell dysfunction and insulin resistance are the most common and crucial events of T2DM. Increasing evidence suggests the association of epigenetic modifications with the pathogenesis of T2DM through the changes in important biological processes including pancreatic ß- cell differentiation, development and maintenance of normal ß-cell function. Insulin sensitivity by the peripheral glucose uptake tissues is also changed by the altered epigenetic mechanisms. In this review, we discussed the major epigenetic alterations and their effects on ß-cell function, insulin secretion and insulin resistance in context of T2DM. METHODS: We investigated the presently available epigenetic modifications including DNA methylation, posttranslational histone modifications, ATP-dependent chromatin remodeling and non-coding RNAs related to the pathogenesis of T2DM. Published literatures on this topic were searched both on Google Scholar and Pubmed with related keywords and investigated for relevant information. RESULTS: The epigenetic modifications introduce changes in gene expression which are essential for appropriate ß-cell development and functions, insulin secretion and sensitivity resulting in the pathogenesis of T2DM. Interestingly, T2DM could also be a prominent reason for the mentioned epigenetic alterations. CONCLUSION: This review article emphasized on the epigenetic modifications associated with T2DM and discussed the consequences in deterioration of the disease condition.
Subject(s)
Diabetes Mellitus, Type 2/genetics , Epigenesis, Genetic/physiology , Cell Differentiation/genetics , DNA Methylation/physiology , Diabetes Mellitus, Type 2/pathology , Humans , Insulin Resistance/genetics , Insulin-Secreting Cells/physiologyABSTRACT
Following publication of the original article [1], the authors reported that Figs. 4 and 5 had mistakenly been transposed. Please find the correct Figs. 4 and 5 below. The original article [1] has been corrected.
ABSTRACT
BACKGROUND: VirtUaL ChIP-seq Analysis through Networks (VULCAN) infers regulatory interactions of transcription factors by overlaying networks generated from publicly available tumor expression data onto ChIP-seq data. We apply our method to dissect the regulation of estrogen receptor-alpha activation in breast cancer to identify potential co-regulators of the estrogen receptor's transcriptional response. RESULTS: VULCAN analysis of estrogen receptor activation in breast cancer highlights the key components of the estrogen receptor complex alongside a novel interaction with GRHL2. We demonstrate that GRHL2 is recruited to a subset of estrogen receptor binding sites and regulates transcriptional output, as evidenced by changes in estrogen receptor-associated eRNA expression and stronger estrogen receptor binding at active enhancers after GRHL2 knockdown. CONCLUSIONS: Our findings provide new insight into the role of GRHL2 in regulating eRNA transcription as part of estrogen receptor signaling. These results demonstrate VULCAN, available from Bioconductor, as a powerful predictive tool.
Subject(s)
Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Genetic Techniques , Transcription Factors/metabolism , Algorithms , Female , HumansABSTRACT
TGFß-SMAD signaling exerts a contextual effect that suppresses malignant growth early in epithelial tumorigenesis but promotes metastasis at later stages. Longstanding challenges in resolving this functional dichotomy may uncover new strategies to treat advanced carcinomas. The Krüppel-like transcription factor, KLF10, is a pivotal effector of TGFß/SMAD signaling that mediates antiproliferative effects of TGFß. In this study, we show how KLF10 opposes the prometastatic effects of TGFß by limiting its ability to induce epithelial-to-mesenchymal transition (EMT). KLF10 depletion accentuated induction of EMT as assessed by multiple metrics. KLF10 occupied GC-rich sequences in the promoter region of the EMT-promoting transcription factor SLUG/SNAI2, repressing its transcription by recruiting HDAC1 and licensing the removal of activating histone acetylation marks. In clinical specimens of lung adenocarcinoma, low KLF10 expression associated with decreased patient survival, consistent with a pivotal role for KLF10 in distinguishing the antiproliferative versus prometastatic functions of TGFß. Our results establish that KLF10 functions to suppress TGFß-induced EMT, establishing a molecular basis for the dichotomy of TGFß function during tumor progression. Cancer Res; 77(9); 2387-400. ©2017 AACR.
Subject(s)
Adenocarcinoma/genetics , Early Growth Response Transcription Factors/genetics , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Kruppel-Like Transcription Factors/genetics , Lung Neoplasms/genetics , Transforming Growth Factor beta/genetics , A549 Cells , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Humans , Lung Neoplasms/pathology , Mice, Knockout , Patients , Promoter Regions, Genetic , Signal Transduction , Snail Family Transcription Factors/geneticsABSTRACT
BACKGROUND: Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. RESULTS: Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-"suppressed" genes is associated with enhancer activation via FOXL2. CONCLUSION: Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications.
Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Ubiquitin-Protein Ligases/metabolism , Animals , Cyclin-Dependent Kinase 9/metabolism , Enhancer Elements, Genetic , Enhancer of Zeste Homolog 2 Protein/genetics , Fibroblasts/metabolism , Genes, Homeobox , Histones/metabolism , Mice , Mice, Knockout , Organ Specificity/genetics , Protein Binding , Transcription Elongation, Genetic , Transcription, Genetic , Transcriptional Activation , UbiquitinationABSTRACT
FOXA1 is a pioneer factor that binds to enhancer regions that are enriched in H3K4 mono- and dimethylation (H3K4me1 and H3K4me2). We performed a FOXA1 rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) screen in ERα-positive MCF-7 breast cancer cells and found histone-lysine N-methyltransferase (MLL3) as the top FOXA1-interacting protein. MLL3 is typically thought to induce H3K4me3 at promoter regions, but recent findings suggest it may contribute to H3K4me1 deposition. We performed MLL3 chromatin immunoprecipitation sequencing (ChIP-seq) in breast cancer cells, and MLL3 was shown to occupy regions marked by FOXA1 occupancy and H3K4me1 and H3K4me2. MLL3 binding was dependent on FOXA1, indicating that FOXA1 recruits MLL3 to chromatin. MLL3 silencing decreased H3K4me1 at enhancer elements but had no appreciable impact on H3K4me3 at enhancer elements. We propose a mechanism whereby the pioneer factor FOXA1 recruits the chromatin modifier MLL3 to facilitate the deposition of H3K4me1 histone marks, subsequently demarcating active enhancer elements.