Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biotechnol Bioeng ; 119(8): 2196-2205, 2022 08.
Article in English | MEDLINE | ID: mdl-35478456

ABSTRACT

Skeletal muscle atrophy is characterized by decreases in protein content, myofiber diameter, and contractile force generation. As muscle atrophy worsens the quality of life, the development of anti-atrophic substances is desirable. In this study, we aimed to demonstrate a screening process for anti-atrophic peptides using photo-cleavable peptide array technology and human contractile atrophic muscle models. We developed a 96-well system and established a screening process with less variability. Dexamethasone-induced human atrophic tissue was constructed in the system. Eight peptides were selected from the literature and used for the screening of peptides for preventing the decrease of the contractile forces of tissues. The peptide QIGFIW, which showed preventive activity, was selected as the seed sequence. As a result of amino acid substitution, we obtained QIGFIQ as a peptide with higher anti-atrophic activity. These results indicate that the combinatorial use of the photo-cleavable peptide array technology and 96-well screening system could comprise a powerful approach to obtaining anti-atrophic peptides, and suggest that the 96-well screening system and atrophic model represent a practical and powerful tool for the development of drugs/functional food ingredients.


Subject(s)
Muscular Atrophy , Quality of Life , Humans , Muscle Contraction , Muscle, Skeletal , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Peptides
2.
Sci Rep ; 13(1): 8146, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231024

ABSTRACT

Pathophysiological analysis and drug discovery targeting human diseases require disease models that suitably recapitulate patient pathology. Disease-specific human induced pluripotent stem cells (hiPSCs) differentiated into affected cell types can potentially recapitulate disease pathology more accurately than existing disease models. Such successful modeling of muscular diseases requires efficient differentiation of hiPSCs into skeletal muscles. hiPSCs transduced with doxycycline-inducible MYOD1 (MYOD1-hiPSCs) have been widely used; however, they require time- and labor-consuming clonal selection, and clonal variations must be overcome. Moreover, their functionality should be carefully examined. Here, we demonstrated that bulk MYOD1-hiPSCs established with puromycin selection rather than G418 selection showed rapid and highly efficient differentiation. Interestingly, bulk MYOD1-hiPSCs exhibited average differentiation properties of clonally established MYOD1-hiPSCs, suggesting that it is possible to minimize clonal variations. Moreover, disease-specific hiPSCs of spinal bulbar muscular atrophy (SBMA) could be efficiently differentiated via this method into skeletal muscle that showed disease phenotypes, suggesting the applicability of this method for disease analysis. Finally, three-dimensional muscle tissues were fabricated from bulk MYOD1-hiPSCs, which exhibited contractile force upon electrical stimulation, indicating their functionality. Thus, our bulk differentiation requires less time and labor than existing methods, efficiently generates contractible skeletal muscles, and may facilitate the generation of muscular disease models.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Diseases , Humans , Cells, Cultured , Cell Differentiation/genetics , Muscle, Skeletal , Muscular Diseases/metabolism
3.
Cells ; 11(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497020

ABSTRACT

In vitro neuromuscular junction (NMJ) models are powerful tools for studying neuromuscular disorders. Although linearly patterned culture surfaces have been reported to be useful for the formation of in vitro NMJ models using mouse motor neuron (MNs) and skeletal muscle (SkM) myotubes, it is unclear how the linearly patterned culture surface increases acetylcholine receptor (AChR) clustering, one of the steps in the process of NMJ formation, and whether this increases the in vitro NMJ formation efficiency of co-cultured human MNs and SkM myotubes. In this study, we investigated the effects of a linearly patterned culture surface on AChR clustering in myotubes and examined the possible mechanism of the increase in AChR clustering using gene expression analysis, as well as the effects of the patterned surface on the efficiency of NMJ formation between co-cultured human SkM myotubes and human iPSC-derived MNs. Our results suggest that better differentiation of myotubes on the patterned surface, compared to the flat surface, induced gene expression of integrin α7 and AChR ε-subunit, thereby increasing AChR clustering. Furthermore, we found that the number of NMJs between human SkM cells and MNs increased upon co-culture on the linearly patterned surface, suggesting the usefulness of the patterned surface for creating in vitro human NMJ models.


Subject(s)
Acetylcholine , Receptors, Cholinergic , Humans , Mice , Animals , Receptors, Cholinergic/metabolism , Coculture Techniques , Acetylcholine/metabolism , Neuromuscular Junction/metabolism , Motor Neurons/metabolism , Muscle, Skeletal/metabolism
4.
Lab Chip ; 21(10): 1897-1907, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34008665

ABSTRACT

Engineered three-dimensional models of neuromuscular tissues are promising for use in mimicking their disorder states in vitro. Although several models have been developed, it is still challenging to mimic the physically separated structures of motor neurons (MNs) and skeletal muscle (SkM) fibers in the motor units in vivo. In this study, we aimed to develop microdevices for precisely compartmentalized coculturing of MNs and engineered SkM tissues. The developed microdevices, which fit a well of 24 well plates, had a chamber for MNs and chamber for SkM tissues. The two chambers were connected by microtunnels for axons, permissive to axons but not to cell bodies. Human iPSC (hiPSC)-derived MN spheroids in one chamber elongated their axons into microtunnels, which reached the tissue-engineered human SkM in the SkM chamber, and formed functional neuromuscular junctions with the muscle fibers. The cocultured SkM tissues with MNs on the device contracted spontaneously in response to spontaneous firing of MNs. The addition of a neurotransmitter, glutamate, into the MN chamber induced contraction of the cocultured SkM tissues. Selective addition of tetrodotoxin or vecuronium bromide into either chamber induced SkM tissue relaxation, which could be explained by the inhibitory mechanisms. We also demonstrated the application of chemical or mechanical stimuli to the middle of the axons of cocultured tissues on the device. Thus, compartmentalized neuromuscular tissue models fabricated on the device could be used for phenotypic screening to evaluate the cellular type specific efficacy of drug candidates and would be a useful tool in fundamental research and drug development for neuromuscular disorders.


Subject(s)
Lab-On-A-Chip Devices , Motor Neurons , Humans , Muscle Fibers, Skeletal , Muscle, Skeletal , Neuromuscular Junction
5.
Adv Biosyst ; 4(11): e2000121, 2020 11.
Article in English | MEDLINE | ID: mdl-33084245

ABSTRACT

In the development process for drugs used to treat skeletal muscle, cell-based contractile force assays have been considered as a useful in vitro test. Immortalized human myogenic cells are promising as cell sources for reproducible and well-characterized in vitro models. In this study, it is investigated whether immortalized human myogenic cells, Hu5/KD3, have suitable contractile ability and the potential to be used as cell sources for contractile force assays. Muscle tissues are fabricated using Hu5/KD3 cells on the microfabricated devices used to measure contractile force. The tissues generate a tetanic force of ≈30 µN in response to the electrical pulse stimulation (EPS). Gene expression analysis of the myosin heavy chain (MYH) isoform indicates that the tissues mostly consisted of muscle fibers expressing MYH7 or/and MYH8. The addition of dexamethasone or lovastatin decreases the contractile force of the tissues, indicating that the tissues have the potential to evaluate drug candidates designed to treat muscle atrophy or statin-induced myopathy. It is also demonstrated that the contractile force of tissues increased when EPS is applied as an artificial exercise. These results indicate that the Hu5/KD3 tissues can be employed for contractile force assays and would be useful for in vitro human skeletal muscle models.


Subject(s)
Models, Biological , Muscle Contraction/physiology , Muscle Fibers, Skeletal , Cell Line , Electric Stimulation , Humans , Muscle Development , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Tissue Array Analysis , Tissue Engineering
6.
Sci Rep ; 8(1): 12427, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127448

ABSTRACT

Human pluripotent stem cells, including human induced pluripotent stem cells (hiPSCs), serve as highly valuable sources for both cell-based therapies and basic research, owing to their abilities to self-renew and differentiate into any cell type of the human body. However, tumorigenic risks of residual undifferentiated stem cells limit the clinical application of hiPSCs, necessitating methods to eliminate undifferentiated hiPSCs from differentiated cells. Here, we found that undifferentiated hiPSCs were more sensitive to the treatment with a medium supplemented with high concentration of L-alanine than human fibroblasts (hFBs), human skeletal muscle cells (hSkMCs), hiPSC-derived cardiomyocytes (iCMs) or hiPSC-derived fibroblast-like cells (iFLCs), which were used as differentiated cells. Undifferentiated hiPSCs co-cultured with differentiated cells were selectively eliminated following treatment. In addition, we found that the medium supplemented with high concentration of D-alanine or ß-alanine also induced cell death of hiPSCs and the treatment at 4 °C didn't induce cell death of hiPSCs. The cell death induced would be associated partly with high osmotic pressure of the medium supplemented with L-alanine. As L-alanine is a component of proteins in human body and popular ingredient of cell culture media, treatment with high concentration of L-alanine may be useful for eliminating tumorigenic residual hiPSCs for stem cell-based therapies.


Subject(s)
Alanine/pharmacology , Induced Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/drug effects , Carcinogenesis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Muscle Fibers, Skeletal/drug effects , Myocytes, Cardiac/drug effects
7.
Regen Ther ; 5: 55-63, 2016 Dec.
Article in English | MEDLINE | ID: mdl-31245502

ABSTRACT

Human pluripotent stem cells, including human induced pluripotent stem cells (hiPSCs), are promising materials for regenerative medicine and cell transplantation therapy. However, tumorigenic potential of residual undifferentiated stem cells hampers their use in these therapies. Therefore, it is important to develop methods that selectively eliminate undifferentiated stem cells from a population of differentiated cells before their transplantation. In the present study, we investigated whether plasma-activated medium (PAM) selectively eliminated undifferentiated hiPSCs by inducing external oxidative stress. PAM was prepared by irradiating cell culture medium with non-thermal atmospheric pressure plasma. We observed that PAM selectively and efficiently killed undifferentiated hiPSCs cocultured with normal human dermal fibroblasts (NHDFs), which were used as differentiated cells. We also observed that undifferentiated hiPSCs were more sensitive to PAM than hiPSC-derived differentiated cells. Gene expression analysis suggested that lower expression of oxidative stress-related genes, including those encoding enzymes involved in hydrogen peroxide (H2O2) degradation, in undifferentiated hiPSCs was one of the mechanisms underlying PAM-induced selective cell death. PAM killed undifferentiated hiPSCs more efficiently than a medium containing the same concentration of H2O2 as that in PAM, suggesting that H2O2 and various reactive oxygen/nitrogen species in PAM selectively eliminated undifferentiated hiPSCs. Thus, our results indicate that PAM has a great potential to eliminate tumorigenic hiPSCs from a population of differentiated cells and that it may be a very useful tool in regenerative medicine and cell transplantation therapy.

SELECTION OF CITATIONS
SEARCH DETAIL