Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Neuropsychopharmacol ; 27(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38457375

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a leading cause of disability with significant mortality risk. Despite progress in our understanding of the etiology of MDD, the underlying molecular changes in the brain remain poorly understood. Extracellular vesicles (EVs) are lipid-bound particles that can reflect the molecular signatures of the tissue of origin. We aimed to optimize a streamlined EV isolation protocol from postmortem brain tissue and determine whether EV RNA cargo, particularly microRNAs (miRNAs), have an MDD-specific profile. METHODS: EVs were isolated from postmortem human brain tissue. Quality was assessed using western blots, transmission electron microscopy, and microfluidic resistive pulse sensing. EV RNA was extracted and sequenced on Illumina platforms. Functional follow-up was performed in silico. RESULTS: Quality assessment showed an enrichment of EV markers, as well as a size distribution of 30 to 200 nm in diameter, and no contamination with cellular debris. Small RNA profiling indicated the presence of several RNA biotypes, with miRNAs and transfer RNAs being the most prominent. Exploring miRNA levels between groups revealed decreased expression of miR-92a-3p and miR-129-5p, which was validated by qPCR and was specific to EVs and not seen in bulk tissue. Finally, in silico functional analyses indicate potential roles for these 2 miRNAs in neurotransmission and synaptic plasticity. CONCLUSION: We provide a streamlined isolation protocol that yields EVs of high quality that are suitable for molecular follow-up. Our findings warrant future investigations into brain EV miRNA dysregulation in MDD.


Subject(s)
Depressive Disorder, Major , Extracellular Vesicles , MicroRNAs , Humans , Depressive Disorder, Major/metabolism , Depression , MicroRNAs/genetics , Extracellular Vesicles/genetics , Brain/metabolism
2.
Acta Neuropathol ; 145(4): 439-459, 2023 04.
Article in English | MEDLINE | ID: mdl-36729133

ABSTRACT

Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.


Subject(s)
Mental Disorders , Neocortex , Humans , Mental Disorders/genetics , Aging/genetics , Neurons , Genotype , Polymorphism, Single Nucleotide
3.
Mol Psychiatry ; 27(3): 1552-1561, 2022 03.
Article in English | MEDLINE | ID: mdl-34799691

ABSTRACT

Child abuse (CA) is a strong predictor of psychopathologies and suicide, altering normal trajectories of brain development in areas closely linked to emotional responses such as the prefrontal cortex (PFC). Yet, the cellular underpinnings of these enduring effects are unclear. Childhood and adolescence are marked by the protracted formation of perineuronal nets (PNNs), which orchestrate the closure of developmental windows of cortical plasticity by regulating the functional integration of parvalbumin interneurons into neuronal circuits. Using well-characterized post-mortem brain samples, we show that a history of CA is specifically associated with increased densities and morphological complexity of WFL-labeled PNNs in the ventromedial PFC (BA11/12), possibly suggesting increased recruitment and maturation of PNNs. Through single-nucleus sequencing and fluorescent in situ hybridization, we found that the expression of canonical components of PNNs is enriched in oligodendrocyte progenitor cells (OPCs), and that they are upregulated in CA victims. These correlational findings suggest that early-life adversity may lead to persistent patterns of maladaptive behaviors by reducing the neuroplasticity of cortical circuits through the enhancement of developmental OPC-mediated PNN formation.


Subject(s)
Child Abuse , Oligodendrocyte Precursor Cells , Child , Extracellular Matrix/metabolism , Humans , In Situ Hybridization, Fluorescence , Interneurons/metabolism , Oligodendrocyte Precursor Cells/metabolism , Parvalbumins/metabolism , Prefrontal Cortex/metabolism
4.
Psychiatry Clin Neurosci ; 77(12): 653-664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37675893

ABSTRACT

AIM: The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS: A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100ß), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS: At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100ß, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1ß, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100ß, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100ß, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION: This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.


Subject(s)
Electroconvulsive Therapy , Humans , Astrocytes/metabolism , Depression/therapy , Neuroinflammatory Diseases , Interleukin-4/metabolism , Interleukin-4/pharmacology , Anti-Inflammatory Agents/pharmacology
5.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047192

ABSTRACT

RNA modifications known as epitranscriptomics have emerged as a novel layer of transcriptomic regulation. Like the well-studied epigenetic modifications characterized in DNA and on histone-tails, they have been shown to regulate activity-dependent gene expression and play a vital role in shaping synaptic connections in response to external stimuli. Among the hundreds of known RNA modifications, N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes. Through recognition of its binding proteins, m6A can regulate various aspects of mRNA metabolism and is essential for maintaining higher brain functions. Indeed, m6A is highly enriched in synapses and is involved in neuronal plasticity, learning and memory, and adult neurogenesis. m6A can also respond to environmental stimuli, suggesting an important role in linking molecular and behavioral stress. This review summarizes key findings from fields related to major depressive disorder (MDD) including stress and learning and memory, which suggest that activity-dependent m6A changes may, directly and indirectly, contribute to synaptic connectivity changes underlying MDD. Furthermore, we will highlight the roles of m6A and FTO, a m6A eraser, in the context of depressive-like behaviors. Although we have only begun to explore m6A in the context of MDD and psychiatry, elucidating a link between m6A and MDD presents a novel molecular mechanism underlying MDD pathogenesis.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Depressive Disorder, Major/genetics , Epigenesis, Genetic , Eukaryota/genetics , RNA , RNA, Messenger/genetics
6.
Bioinformatics ; 37(10): 1345-1351, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33226074

ABSTRACT

MOTIVATION: Single-cell RNA-sequencing (scRNA-seq) offers the opportunity to dissect heterogeneous cellular compositions and interrogate the cell-type-specific gene expression patterns across diverse conditions. However, batch effects such as laboratory conditions and individual-variability hinder their usage in cross-condition designs. RESULTS: Here, we present a single-cell Generative Adversarial Network (scGAN) to simultaneously acquire patterns from raw data while minimizing the confounding effect driven by technical artifacts or other factors inherent to the data. Specifically, scGAN models the data likelihood of the raw scRNA-seq counts by projecting each cell onto a latent embedding. Meanwhile, scGAN attempts to minimize the correlation between the latent embeddings and the batch labels across all cells. We demonstrate scGAN on three public scRNA-seq datasets and show that our method confers superior performance over the state-of-the-art methods in forming clusters of known cell types and identifying known psychiatric genes that are associated with major depressive disorder. AVAILABILITYAND IMPLEMENTATION: The scGAN code and the information for the public scRNA-seq datasets are available at https://github.com/li-lab-mcgill/singlecell-deepfeature. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Depressive Disorder, Major , Single-Cell Analysis , Gene Expression Profiling , Humans , Sequence Analysis, RNA , Transcriptome
7.
Int J Neuropsychopharmacol ; 25(1): 75-84, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34894233

ABSTRACT

Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This review aims to highlight that gap by exploring pre-clinical data-at a behavioral, molecular, and structural level-and recent clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that ketamine should be administered adhering to sex-specific considerations.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Ketamine/pharmacology , Sex Characteristics , Female , Humans , Male
8.
Mol Psychiatry ; 26(12): 7417-7424, 2021 12.
Article in English | MEDLINE | ID: mdl-34385599

ABSTRACT

Previous work has demonstrated that microRNAs (miRNAs) change as a function of antidepressant treatment (ADT) response. However, it is unclear how representative these peripherally detected miRNA changes are to those occurring in the brain. This study aimed to use peripherally extracted neuron-derived extracellular vesicles (NDEV) to circumvent these limitations and investigate neuronal miRNA changes associated with antidepressant response. Samples were collected at two time points (baseline and after 8 weeks of follow-up) from depressed patients who responded (N = 20) and did not respond (N = 20) to escitalopram treatment, as well as controls (N = 20). Total extracellular vesicles (EVs) were extracted from plasma, and then further enriched for NDEV by immunoprecipitation with L1CAM. EVs and NDEVs were characterized, and NDEV miRNA cargo was extracted and sequenced. Subsequently, studies in cell lines and postmortem tissue were conducted. Characterization of NDEVs revealed that they were smaller than other EVs isolated from plasma (p < 0.0001), had brain-specific neuronal markers, and contained miRNAs enriched for brain functions (p < 0.0001) Furthermore, NDEVs from depressed patients were smaller than controls (p < 0.05), and NDEV size increased with ADT response (p < 0.01). Finally, changes in NDEV cargo, specifically changes in miR-21-5p, miR-30d-5p, and miR-486-5p together (p < 0.01), were associated with ADT response. Targets of these three miRNAs were altered in brain tissue from depressed individuals (p < 0.05). Together, this study indicates that changes in peripherally isolated NDEV can act as both a clinically accessible and informative biomarker of ADT response specifically through size and cargo.


Subject(s)
Extracellular Vesicles , MicroRNAs , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , MicroRNAs/metabolism , Neurons/metabolism , Plasma
9.
Mol Psychiatry ; 26(7): 3134-3151, 2021 07.
Article in English | MEDLINE | ID: mdl-33046833

ABSTRACT

Epigenetic mechanisms, like those involving DNA methylation, are thought to mediate the relationship between chronic cocaine dependence and molecular changes in addiction-related neurocircuitry, but have been understudied in human brain. We initially used reduced representation bisulfite sequencing (RRBS) to generate a methylome-wide profile of cocaine dependence in human post-mortem caudate tissue. We focused on the Iroquois Homeobox A (IRXA) gene cluster, where hypomethylation in exon 3 of IRX2 in neuronal nuclei was associated with cocaine dependence. We replicated this finding in an independent cohort and found similar results in the dorsal striatum from cocaine self-administering mice. Using epigenome editing and 3C assays, we demonstrated a causal relationship between methylation within the IRX2 gene body, CTCF protein binding, three-dimensional (3D) chromatin interaction, and gene expression. Together, these findings suggest that cocaine-related hypomethylation of IRX2 contributes to the development and maintenance of cocaine dependence through alterations in 3D chromatin structure in the caudate nucleus.


Subject(s)
Chromatin , Cocaine-Related Disorders , DNA Methylation , Homeodomain Proteins/genetics , Multigene Family , Neurons , Animals , Cocaine , Cocaine-Related Disorders/genetics , Mice
10.
Int J Neuropsychopharmacol ; 24(12): 935-947, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34214149

ABSTRACT

BACKGROUND: Suicide represents a major health concern, especially in developing countries. While many demographic risk factors have been proposed, the underlying molecular pathology of suicide remains poorly understood. A body of evidence suggests that aberrant DNA methylation and expression is involved. In this study, we examined DNA methylation profiles and concordant gene expression changes in the prefrontal cortex of Mexicans who died by suicide. METHODS: In collaboration with the coroner's office in Mexico City, brain samples of males who died by suicide (n = 35) and age-matched sudden death controls (n = 13) were collected. DNA and RNA were extracted from prefrontal cortex tissue and analyzed with the Infinium Methylation480k and the HumanHT-12 v4 Expression Beadchips, respectively. RESULTS: We report evidence of altered DNA methylation profiles at 4430 genomic regions together with 622 genes characterized by differential expression in cases vs controls. Seventy genes were found to have concordant methylation and expression changes. Metacore-enriched analysis identified 10 genes with biological relevance to psychiatric phenotypes and suicide (ADCY9, CRH, NFATC4, ABCC8, HMGA1, KAT2A, EPHA2, TRRAP, CD22, and CBLN1) and highlighted the association that ADCY9 has with various pathways, including signal transduction regulated by the cAMP-responsive element modulator, neurophysiological process regulated by the corticotrophin-releasing hormone, and synaptic plasticity. We therefore went on to validate the observed hypomethylation of ADCY9 in cases vs control through targeted bisulfite sequencing. CONCLUSION: Our study represents the first, to our knowledge, analysis of DNA methylation and gene expression associated with suicide in a Mexican population using postmortem brain, providing novel insights for convergent molecular alterations associated with suicide.


Subject(s)
DNA Methylation , Gene Expression , Prefrontal Cortex/metabolism , Suicide , Adult , Case-Control Studies , Epigenesis, Genetic , Humans , Male , Mexico
11.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299232

ABSTRACT

The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Chromatin/physiology , Binding Sites/genetics , Chromatin Immunoprecipitation/methods , Epigenesis, Genetic/genetics , Epigenome/genetics , Epigenomics/methods , Gene Expression Regulation/genetics , Genome , Genome-Wide Association Study/methods , Histone Code/genetics , Humans , Multifactorial Inheritance/genetics , Nucleosomes/metabolism , Nucleosomes/physiology , Polymorphism, Single Nucleotide/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
12.
Dev Psychopathol ; 32(2): 511-519, 2020 05.
Article in English | MEDLINE | ID: mdl-31030686

ABSTRACT

Theory of mind, the ability to represent the mental states of others, is an important social cognitive process, which contributes to the development of social competence. Recent research suggests that interactions between gene and environmental factors, such as oxytocin receptor gene (OXTR) polymorphisms and maternal parenting behavior, may underlie individual differences in children's theory of mind. However, the potential influence of DNA methylation of OXTR remains unclear. The current study investigated the roles of OXTR methylation, maternal behavior, and their statistical interaction on toddlers' early emerging theory of mind abilities. Participants included a community sample of 189 dyads of mothers and their 2- to 3-year-old children, whose salivary DNA was analyzed. Results indicated that more maternal structuring behavior was associated with better performance, on a battery of three theory of mind tasks, while higher OXTR methylation within exon 3 was associated with poorer performance. A significant interaction also emerged, such that OXTR methylation was related to theory of mind among children whose mothers displayed less structuring, when controlling for children's age, sex, ethnicity, number of child-aged siblings, verbal ability, and maternal education. Maternal structuring behavior may buffer the potential negative impact of hypermethylation on OXTR gene expression and function.


Subject(s)
Receptors, Oxytocin , Theory of Mind , Child, Preschool , Female , Humans , Maternal Behavior , Oxytocin , Parenting , Receptors, Oxytocin/genetics
13.
Int J Neuropsychopharmacol ; 20(1): 50-57, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27516431

ABSTRACT

Background: Major depressive disorder has been associated with dysfunctional astrocytic networks. The underlying causes, extent, and consequences of such dysfunctions remain to be characterized. Astrocyte-astrocyte communication occurs principally through gap junction channels primarily formed by connexin 30 and 43 (CX30 and CX43). We previously reported decreased connexin expression in the prefrontal cortex of depressed suicides. In the present study, we investigated whether these changes are mediated by epigenetic regulation, and expanded gene expression quantifications to other cortical and subcortical regions to assess the regional distribution of connexion disruptions in depressed suicides. Methods: The expression of CX30 and CX43 was measured by real-time PCR in samples of neocortex (Brodmann areas 4 and 17), cerebellar cortex, mediodorsal thalamus, and caudate nucleus of 22 depressed suicides and 22 matched sudden-death controls. Chromatin immunoprecipitation was used to measure enrichment levels of the repressive chromatin mark H3K9me3 in the prefrontal cortex. Results: We found a consistent downregulation of connexin genes in all regions examined, except in the cerebellum where an increase in the expression of CX30 was measured and using chromatin immunoprecipitation we observed an enrichment of H3K9me3 for both Cx30 and Cx43 in the prefrontal cortex. Conclusions: Our study shows widespread astrocytic CX gene repression in depressed suicides that is mediated, at least in part, through epigenetic mechanisms. Taken together, these findings support the notion of widespread cerebral astrocytic dysfunction in major depressive disorder.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Connexin 30/metabolism , Connexin 43/metabolism , Depressive Disorder/metabolism , Suicide , Adult , Astrocytes/pathology , Brain/pathology , Cohort Studies , DNA Methylation , Depressive Disorder/pathology , Gene Expression , Gray Matter/metabolism , Gray Matter/pathology , Histones/metabolism , Humans , Male
14.
Horm Behav ; 96: 84-94, 2017 11.
Article in English | MEDLINE | ID: mdl-28918249

ABSTRACT

The present study investigated the association of perinatal depression (PD) with differential methylation of 3 genomic regions among mother and child dyads: exon 3 within the oxytocin receptor (OXTR) gene and 2 intergenic regions (IGR) between the oxytocin (OXT) and vasopressin (AVP) genes. Maternal PD was assessed at 5 time-points during pregnancy and postpartum. Four groups were established based on Edinburgh Postnatal Depression Scale (EPDS) cut-off scores: no PD, prenatal or postpartum depressive symptoms only and persistent PD (depressive symptoms both prenatally and postpartum). Salivary DNA was collected from mothers and children at the final time-point, 2.9years postpartum. Mothers with persistent PD had significantly higher overall OXTR methylation than the other groups and this pattern extended to 16/22 individual CpG sites. For the IGR, only the region closer to the AVP gene (AVP IGR) showed significant differential methylation, with the persistent PD group displaying the lowest levels of methylation overall, but not for individual CpG sites. These results suggest that transient episodes of depression may not be associated with OXTR hypermethylation. Validation studies need to confirm the downstream biological effects of AVP IGR hypomethylation as it relates to persistent PD. Differential methylation of the OXTR and IGR regions was not observed among children exposed to maternal PD. The consequences of OXTR hypermethylation and AVP IGR hypomethylation found in mothers with persistent PDS may not only impact the OXT system, but may also compromise maternal behavior, potentially resulting in negative outcomes for the developing child.


Subject(s)
DNA Methylation , Depression/genetics , Oxytocin , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/psychology , Receptors, Oxytocin , Adult , Child, Preschool , Depression/complications , Depression, Postpartum/genetics , Female , Humans , Infant , Infant, Newborn , Male , Maternal Behavior , Mother-Child Relations/psychology , Mothers/psychology , Neurophysins/genetics , Neurophysins/metabolism , Oxytocin/genetics , Oxytocin/metabolism , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/psychology , Protein Precursors/genetics , Protein Precursors/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Signal Transduction/genetics , Vasopressins/genetics , Vasopressins/metabolism
15.
Exp Mol Pathol ; 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27746278

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

16.
BMC Psychiatry ; 16(1): 286, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27515700

ABSTRACT

BACKGROUND: The Synapsins (SYN1, SYN2, and SYN3) are important players in the adult brain, given their involvement in synaptic transmission and plasticity, as well as in the developing brain through roles in axon outgrowth and synaptogenesis. We and others previously reported gene expression dysregulation, both as increases and decreases, of Synapsins in mood disorders, but little is known about the regulatory mechanisms leading to these differences. Thus, we proposed to study DNA methylation at theses genes' promoter regions, under the assumption that altered epigenetic marks at key regulatory sites would be the cause of gene expression changes and thus part of the mood disorder etiology. METHODS: We performed CpG methylation mapping focusing on the three genes' predicted CpG islands using the Sequenom EpiTYPER platform. DNA extracted from post-mortem brain tissue (BA10) from individuals who had lived with bipolar disorder (BD), major depressive disorder (MDD), as well as psychiatrically healthy individuals was used. Differences in methylation across all CpGs within a CpG island and between the three diagnostic groups were assessed by 2-way mixed model analyses of variance. RESULTS: We found no significant results for SYN1 or SYN3, but there was a significant group difference in SYN2 methylation, as well as an overall pattern of hypomethylation across the CpG island. Furthermore, we found a significant inverse correlation of DNA methylation with SYN2a mRNA expression. CONCLUSIONS: These findings contribute to previous work showing dysregulation of Synapsins, particularly SYN2, in mood disorders and improve our understanding of the regulatory mechanisms that precipitate these changes likely leading to the BD or MDD phenotype.


Subject(s)
Arabidopsis Proteins/genetics , Bipolar Disorder/genetics , Cell Cycle Proteins/genetics , DNA Methylation/genetics , Depressive Disorder, Major/genetics , Adult , CpG Islands , Female , Humans , Male , Promoter Regions, Genetic/genetics
17.
BMC Genomics ; 15: 290, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24734894

ABSTRACT

BACKGROUND: Bisulfite sequencing is the most efficient single nucleotide resolution method for analysis of methylation status at whole genome scale, but improved quality control metrics are needed to better standardize experiments. RESULTS: We describe BisQC, a step-by-step method for multiplexed bisulfite-converted DNA library construction, pooling, spike-in content, and bioinformatics. We demonstrate technical improvements for library preparation and bioinformatic analyses that can be done in standard laboratories. We find that decoupling amplification of bisulfite converted (bis) DNA from the indexing reaction is an advantage, specifically in reducing total PCR cycle number and pre-selecting high quality bis-libraries. We also introduce a progressive PCR method for optimal library amplification and size-selection. At the sequencing stage, we thoroughly test the benefits of pooling non-bis DNA library with bis-libraries and find that BisSeq libraries can be pooled with a high proportion of non-bis DNA libraries with minimal impact on BisSeq output. For informatics analysis, we propose a series of optimization steps including the utilization of the mitochondrial genome as a QC standard, and we assess the validity of using duplicate reads for coverage statistics. CONCLUSION: We demonstrate several quality control checkpoints at the library preparation, pre-sequencing, post-sequencing, and post-alignment stages, which should prove useful in determining sample and processing quality. We also determine that including a significant portion of non-bisulfite converted DNA with bisulfite converted DNA has a minimal impact on usable bisulfite read output.


Subject(s)
Sequence Analysis, DNA/methods , Base Sequence , DNA Primers , Polymerase Chain Reaction , Sulfites
18.
Brain Stimul ; 17(1): 19-28, 2024.
Article in English | MEDLINE | ID: mdl-38101468

ABSTRACT

BACKGROUND: The neurogenesis hypothesis is a promising candidate etiologic hypothesis for depression, and it is associated with electroconvulsive therapy (ECT). However, human in vivo molecular-level evidence is lacking. OBJECTIVE: We used neuron-derived extracellular vesicles (NDEVs) as a "window to the neurons" to explore the in vivo neurogenesis status associated with ECT in patients with treatment-resistant depression (TRD). METHODS: In this study, we enrolled 40 patients with TRD and 35 healthy controls (HCs). We isolated NDEVs from the plasma of each participant to test the levels of doublecortin (DCX), a marker of neurogenesis, and cluster of differentiation (CD) 81, a marker of EVs. We also assessed the plasma levels of brain-derived neurotrophic factor (BDNF), a protein that is known to be associated with ECT and neuroplastic processes. RESULTS: Our findings indicated that both the levels of DCX in NDEVs and BDNF in plasma were significantly lower in TRD patients compared to HCs at baseline, but increased following ECTs. Conversely, levels of CD81 in NDEVs were found higher in TRD patients at baseline, but did not change after the ECT treatments. Exploratory analyses revealed that lower levels of BDNF in plasma and DCX in NDEVs, along with higher CD81 levels in NDEVs, were associated with more severe depressive symptoms and reduced cognitive function at baseline. Furthermore, higher baseline CD81 concentrations in NDEVs were correlated with greater decreases in depression symptoms. CONCLUSIONS: We first present human in vivo evidence of early neurogenesis using DCX through NDEVs: decreased in TRD patients, increased after ECTs.


Subject(s)
Depressive Disorder, Treatment-Resistant , Electroconvulsive Therapy , Humans , Brain-Derived Neurotrophic Factor , Depression/therapy , Treatment Outcome , Depressive Disorder, Treatment-Resistant/therapy
19.
Eur Neuropsychopharmacol ; 78: 54-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931511

ABSTRACT

Major depressive disorder (MDD) is a serious disease and a burden to patients, families and society. Rodent experiments and human studies suggest that several neuropeptide systems are involved in mood regulation. The aim of this study is two-fold: (i) to monitor, with qPCR, transcript levels of the substance P/tachykinin (TAC), NPY and CCK systems in bulk samples from control and suicide subjects, targeting five postmortem brain regions including locus coeruleus (LC); and (ii) to analyse expression of neuropeptide family transcripts in LC neurons of 'normal' postmortem brains by using laser capture microdissection with Smart-Seq2 RNA sequencing. qPCR revealed distinct regional expression patterns in male and female controls with higher levels for the TAC system in the dorsal raphe nucleus and LC, versus higher transcripts levels of the NPY and CCK systems in prefrontal cortex. In suicide patients, TAC, TAC receptors and a few NPY family transcript levels were increased mainly in prefrontal cortex and LC. The second study on 'normal' noradrenergic LC neurons revealed expression of transcripts for GAL, NPY, TAC1, CCK, and TACR1 and many other peptides (e.g. Cerebellin4 and CARTPT) and receptors (e.g. Adcyap1R1 and GPR173). These data and our previous results on suicide brains indicates that the tachykinin and galanin systems may be valid targets for developing antidepressant medicines. Moreover, the perturbation of neuropeptide systems in MDD patients, and the detection of further neuropeptide and receptor transcripts in LC, shed new light on signalling in noradrenergic LC neurons and on mechanisms possibly associated with mood disorders.


Subject(s)
Depressive Disorder, Major , Neuropeptides , Female , Humans , Male , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Dorsal Raphe Nucleus , Gene Expression Profiling , Locus Coeruleus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Substance P/metabolism , Cholecystokinin/metabolism
20.
Schizophr Res ; 264: 113-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128342

ABSTRACT

OBJECTIVE: Coronary artery calcification (CAC) is a well-established independent predictor of coronary heart disease, and patients with schizophrenia have significantly higher rates compared to the general population. We performed this study to examine the population-specific risk factors associated with CAC in patients with schizophrenia. METHODS: In this cross-sectional study, patients with schizophrenia who underwent low-dose chest CT scans between January 2020 and December 2021 were analyzed. Ordinary CAC scores and results of routine blood tests were obtained. Logistic regression was used to calculate the odds ratio (OR) for potential risk factors in patients with and without CAC, while the negative binomial additive model was used to explore the dose-response relationship between risk factors and CAC score. RESULTS: Of the 916 patients, 233 (25.4 %) had CAC, while 683 (74.6 %) did not. After adjusting for confounding factors, higher triglyceride levels (OR = 1.20, 95 % confidence interval (CI): 1.04 to 1.38, p = 0.013) and low triiodothyronine levels (OR = 0.50, 95 % CI: 0.29 to 0.84; p = 0.010) were identified as risk factors for CAC. Both triglycerides (p = 0.021) and triiodothyronine (p = 0.010) were also found to have significant dose-response relationships with CAC scores according to the negative binomial additive model in the exploratory analysis. CONCLUSIONS: This study highlights elevated serum triglycerides and decreased triiodothyronine levels as population-specific risk factors for CAC in patients with schizophrenia, suggest the need for close monitoring of CAC in patients with schizophrenia and further prospective trials to provide additional evidence on this topic.


Subject(s)
Coronary Artery Disease , Schizophrenia , Humans , Triiodothyronine , Cross-Sectional Studies , Schizophrenia/diagnostic imaging , Schizophrenia/epidemiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Risk Factors , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL