Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Microbiol Rev ; 35(4): e0018019, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36200885

ABSTRACT

Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Ethambutol/therapeutic use , Isoniazid/therapeutic use
2.
Infect Drug Resist ; 16: 3629-3638, 2023.
Article in English | MEDLINE | ID: mdl-37309381

ABSTRACT

Introduction: Current TB treatment regimens are pathogen-directed and can be severely compromised by the development of drug resistance. Metformin has been proposed as an adjunctive therapy for TB, however relatively little is known about how metformin modulates the cellular interaction between Mtb and macrophages. We aimed to characterize how metformin modulates Mtb growth within macrophages. Methods: We utilized live cell tracking through time-lapse microscopy to better understand the biological effect of metformin in response to Mtb infection. Furthermore, the potent first-line anti-TB drug, isoniazid, was used as a comparator and as a companion drug. Results: Metformin caused a 14.2-fold decrease in Mtb growth compared to the untreated control. Metformin combined with isoniazid controlled Mtb growth is slightly better than isoniazid alone. Metformin demonstrated the ability to regulate the cytokine and chemokine response over a 72 hour period, better than isoniazid only. Conclusion: We provide novel evidence that metformin controls mycobacterial growth by increasing host cell viability, and a direct and independent pro-inflammatory response to Mtb. Understanding the impact of metformin on Mtb growth within macrophages will advance our current knowledge on metformin as an adjunctive therapy, providing a new host-directed approach to TB treatment.

3.
J Clin Tuberc Other Mycobact Dis ; 33: 100387, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37554582

ABSTRACT

Background: High-dose isoniazid is recommended in the 9-12 months short-course regimen for multidrug-resistant tuberculosis with inhA mutation. However, there is insufficient evidence to support the assumption of genotypic-phenotypic concordance. This study aimed to identify the genetic mutations associated with high-level phenotypic isoniazid resistance. Methods: Clinical isolates from patients with drug-resistant tuberculosis were profiled by whole-genome sequencing and subjected to minimum inhibitory concentration (MIC) testing using MGIT based-method. MICs were performed in concentration ranges based on the mutation present: isolates with no isoniazid resistance-conferring mutations and H37Rv, 0.016-0.256 µg/ml; inhA, 0.256-4.0 µg/ml, katG 1.0-16.0 µg/ml; and inhA + katG, 4.0-64.0 µg/ml. Isolates demonstrating resistance at the upper limit of the concentration range were tested up to the maximum of 64.0 µg/ml. Bootstrap of the mean MICs was performed to increase the robustness of the estimates and an overlap index was used to compare the distributions of the MICs for each mutation profile. Results: A total of 52 clinical isolates were included in this analysis. Bootstrap MIC means for inhA, katG and inhA + katG were 33.64 (95% CI, 9.47, 56.90), 6.79 (4.45, 9.70) and 52.34 (42.750, 61.66) µg/ml, respectively. There was high overlap between inhA and inhA + katG mutations (eta = 0.45) but not with inhA and katG (eta = 0.19). Furthermore, katG showed poor overlap with inhA + katG mutations (eta = 0.09). Unexpectedly, 4/8 (50.0%) of all InhA mutants demonstrated high-level resistance, while 20/24 (83.3%) of katG mutants demonstrated moderate-level resistance. Conclusions: InhA mutations demonstrated unexpectedly high MICs and showed high overlap with inhA + katG. Contrary to the common belief that katG mutants are associated with high-level resistance, this mutation primarily showed moderate-level resistance.

4.
Front Microbiol ; 11: 435, 2020.
Article in English | MEDLINE | ID: mdl-32411100

ABSTRACT

Tuberculosis (TB) disease is an international health concern caused by the bacteria Mycobacterium tuberculosis (Mtb). Evolution of multi-drug-resistant strains may cause bacterial persistence, rendering existing antibiotics ineffective. Hence, development of new or repurposing of currently approved drugs to fight Mtb in combination with existing antibiotics is urgently needed to cure TB which is refractory to current therapy. The shortening of TB therapy and reduction in lung injury can be achieved using adjunctive host-directed therapies. There is a wide range of probable candidates which include numerous agents permitted for the treatment of other diseases. One potential candidate is metformin, a Food and Drug Administration (FDA)-approved drug used to treat type 2 diabetes mellitus (DM). However, there is a scarcity of evidence supporting the biological basis for the effect of metformin as a host-directed therapy for TB. This scoping review summarizes the current body of evidence and outlines scientific gaps that need to be addressed in determining the potential role of metformin as a host-directed therapy.

5.
Eur J Pharmacol ; 875: 173059, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32131023

ABSTRACT

Diabetes is a metabolic disorder associated with mitochondrial (mt) dysfunction and oxidative stress. The molecular mechanisms involved in diabetes-associated neurological complications remain elusive. This study aims to investigate the protective effect of metformin (MF) on regulatory networks and integrated stress responses in brain tissue of Streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were treated with MF (20 mg/kg BW), and whole brain tissue was harvested for further analysis. Protein carbonylation was measured as a marker of neuronal oxidative stress. Protein expression of mt chaperones, maintenance proteins, and regulators of the unfolded protein response (UPR) were measured by Western blot. Transcript levels of antioxidant enzyme GSTA4; mt biogenesis markers, ER stress regulators, and miR-132 and miR-148a were analysed using qPCR. The results showed that MF efficiently reduced protein carbonylation and oxidation. Mt function was improved by MF-treatment through upregulation of chaperone proteins (HSP60, HSP70 and LonP1). MF elicits the UPR to attenuate ER stress through a miR-132 repression mechanism. Additionally, MF was found to elevate deacetylases- Sirt1, Sirt3; and mt biogenesis marker PGC-1α through miR-148a repression. This is the first study to demonstrate the epigenetic regulation of mt maintenance by MF in diabetic C57BL/6 mouse whole brain tissue. We thus conclude that MF, beyond its anti-hyperglycaemic role, mediates neuroprotection through epigenomic and integrated stress responses in diabetic mice.


Subject(s)
Brain/drug effects , Diabetes Mellitus, Experimental/drug therapy , Endoplasmic Reticulum Stress/drug effects , Metformin/pharmacology , Mitochondria/drug effects , ATP-Dependent Proteases/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Brain/pathology , Chaperonin 60/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Endoplasmic Reticulum Stress/genetics , Epigenesis, Genetic/drug effects , HSP70 Heat-Shock Proteins/metabolism , Humans , Male , Metformin/therapeutic use , Mice , MicroRNAs/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Organelle Biogenesis , Oxidative Stress/drug effects , Oxidative Stress/genetics , Protein Carbonylation/drug effects , Reactive Oxygen Species/metabolism , Streptozocin/toxicity , Unfolded Protein Response/drug effects
6.
Metab Syndr Relat Disord ; 14(2): 114-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26835874

ABSTRACT

BACKGROUND: Fenugreek (Trigonella foenum-graecum) is globally recognized for its medicinal properties and hypoglycemic effects. The seed extract as well as its active compound, 4-hydroxyisoleucine (4-OH-Ile), have been shown to reduce hyperglycemic insulin resistance. The mechanism by which this occurs has not been investigated in human liver cells (HepG2) in comparison to the antihyperglycemic drug, metformin. METHODS: We investigated the effects of an aqueous fenugreek seed extract (FSE), 4-OH-Ile, and metformin in HepG2 cells relative to insulin as a positive control. Cells were treated with FSE and 4-OH-Ile at 100 ng/mL under normoglycemic (5 mM glucose) and hyperglycemic (30 mM glucose) conditions for 72 hr. Tyrosine phosphorylation of insulin receptor-ß (IR-ß), protein kinase B (Akt), glycogen synthase kinase-3α/ß (GSK-3α/ß), and glucose transporter 2 (GLUT2) was determined by western blotting. Gene expression of sterol regulatory element-binding protein 1c (SREBP1c), GLUT2, glycogen synthase (GS), and glucokinase (GK) was evaluated by quantitative polymerase chain reaction, and supernatant glucose levels were measured using the Piccolo biochemistry analyzer. RESULTS: Under normo- and hyperglycemic conditions, FSE, 4-OH-Ile, insulin (100 ng/mL), and metformin (2 mM) caused a significant increase in phosphorylation of IR-ß, Akt, GSK-3α/ß, and GLUT2. Glucose uptake, however, was most significantly increased in FSE-treated cells during both conditions. FSE induced the most significant changes in downstream insulin signaling, GS, GK, SREBP1c, and GLUT2 expression compared to 4-OH-Ile, metformin, and insulin. In addition, FSE significantly increased glucose uptake. CONCLUSIONS: Collectively, these findings provide a mechanism by which FSE exerts antihyperglycemic effects similar to metformin and insulin that occurs via enhanced insulin signaling, gene expression, and increasing glucose uptake.


Subject(s)
Enzymes/metabolism , Glucose Transporter Type 2/metabolism , Hepatocytes/drug effects , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Isoleucine/analogs & derivatives , Metformin/pharmacology , Plant Extracts/pharmacology , Signal Transduction/drug effects , Antigens, CD/metabolism , Enzymes/genetics , Glucose Transporter Type 2/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hep G2 Cells , Hepatocytes/enzymology , Humans , Isoleucine/isolation & purification , Isoleucine/pharmacology , Phosphorylation , Phytotherapy , Plants, Medicinal , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/metabolism , Trigonella , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL