Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Pathol ; 260(5): 551-563, 2023 08.
Article in English | MEDLINE | ID: mdl-37580849

ABSTRACT

Computational pathology refers to applying deep learning techniques and algorithms to analyse and interpret histopathology images. Advances in artificial intelligence (AI) have led to an explosion in innovation in computational pathology, ranging from the prospect of automation of routine diagnostic tasks to the discovery of new prognostic and predictive biomarkers from tissue morphology. Despite the promising potential of computational pathology, its integration in clinical settings has been limited by a range of obstacles including operational, technical, regulatory, ethical, financial, and cultural challenges. Here, we focus on the pathologists' perspective of computational pathology: we map its current translational research landscape, evaluate its clinical utility, and address the more common challenges slowing clinical adoption and implementation. We conclude by describing contemporary approaches to drive forward these techniques. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Algorithms , Prognosis , Pathologists , Neoplasms/diagnosis , Neoplasms/pathology
2.
Proc Natl Acad Sci U S A ; 117(12): 6663-6674, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139610

ABSTRACT

The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1ß, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1ß, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.


Subject(s)
Carbon/metabolism , Cystathionine gamma-Lyase/physiology , Hydrogen Sulfide/toxicity , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/etiology , Alkynes/pharmacology , Animals , Cystathionine gamma-Lyase/antagonists & inhibitors , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Glycolysis , Hydrogen Sulfide/metabolism , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/drug effects , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Signal Transduction , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
3.
Am J Respir Crit Care Med ; 204(5): 583-595, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34015247

ABSTRACT

Rationale: Our current understanding of tuberculosis (TB) pathophysiology is limited by a reliance on animal models, the paucity of human TB lung tissue, and traditional histopathological analysis, a destructive two-dimensional approach that provides limited spatial insight. Determining the three-dimensional (3D) structure of the necrotic granuloma, a characteristic feature of TB, will more accurately inform preventive TB strategies.Objectives: To ascertain the 3D shape of the human tuberculous granuloma and its spatial relationship with airways and vasculature within large lung tissues.Methods: We characterized the 3D microanatomical environment of human tuberculous lungs by using micro computed tomography, histopathology, and immunohistochemistry. By using 3D segmentation software, we accurately reconstructed TB granulomas, vasculature, and airways in three dimensions and confirmed our findings by using histopathology and immunohistochemistry.Measurements and Main Results: We observed marked heterogeneity in the morphology, volume, and number of TB granulomas in human lung sections. Unlike depictions of granulomas as simple spherical structures, human necrotic granulomas exhibit complex, cylindrical, branched morphologies that are connected to the airways and shaped by the bronchi. The use of 3D imaging of human TB lung sections provides unanticipated insight into the spatial organization of TB granulomas in relation to the airways and vasculature.Conclusions: Our findings highlight the likelihood that a single, structurally complex lesion could be mistakenly viewed as multiple independent lesions when evaluated in two dimensions. In addition, the lack of vascularization within obstructed bronchi establishes a paradigm for antimycobacterial drug tolerance. Lastly, our results suggest that bronchogenic spread of Mycobacterium tuberculosis reseeds the lung.


Subject(s)
Granuloma/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology , Lung/ultrastructure , Tuberculosis, Pulmonary/diagnostic imaging , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/physiopathology , Adult , Aged , Aged, 80 and over , Female , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Mycobacterium tuberculosis/pathogenicity , South Africa , X-Ray Microtomography/methods
4.
EBioMedicine ; 105: 105196, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880068

ABSTRACT

BACKGROUND: The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS: We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS: We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION: RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING: Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.

5.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895338

ABSTRACT

Post-TB lung disease (PTLD) causes a significant burden of global disease. Fibrosis is a central component of many clinical features of PTLD. To date, we have a limited understanding of the mechanisms of TB-associated fibrosis and how these mechanisms are similar to or dissimilar from other fibrotic lung pathologies. We have adapted a mouse model of TB infection to facilitate the mechanistic study of TB-associated lung fibrosis. We find that the morphologies of fibrosis that develop in the mouse model are similar to the morphologies of fibrosis observed in human tissue samples. Using Second Harmonic Generation (SHG) microscopy, we are able to quantify a major component of fibrosis, fibrillar collagen, over time and with treatment. Inflammatory macrophage subpopulations persist during treatment; matrix remodeling enzymes and inflammatory gene signatures remain elevated. Our mouse model suggests that there is a therapeutic window during which adjunctive therapies could change matrix remodeling or inflammatory drivers of tissue pathology to improve functional outcomes after treatment for TB infection.

6.
Mucosal Immunol ; 17(2): 155-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185331

ABSTRACT

The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Aged , Adult , Humans , Alveolar Epithelial Cells , Cytosol , Lung/microbiology , Macrophages, Alveolar
7.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873458

ABSTRACT

Rationale: Accurate TB diagnosis is hampered by the variable efficacy of the widely-used Ziehl-Neelsen (ZN) staining method to identify Mycobacterium tuberculosis ( Mtb ) acid-fast bacilli (AFB). Here, we sought to circumvent this current limitation through direct detection of Mtb mRNA. Objectives: To employ RNAscope to determine the spatial distribution of Mtb mRNA within tuberculous human tissue, to appraise ZN-negative tissue from confirmed TB patients, and to provide proof-of-concept of RNAscope as a platform to inform TB diagnosis and Mtb biology. Methods: We examined ante- and postmortem human TB tissue using RNAscope to detect Mtb mRNA and a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). Measurements and main results: We adapted RNAscope for Mtb and identified intact and disintegrated Mtb bacilli and intra- and extracellular Mtb mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchial epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. Conclusions: RNAscope has diagnostic potential and can guide therapeutic intervention as it detects Mtb mRNA and morphology in ZN-negative tissues from TB patients, and Mtb mRNA in ZN-negative antemortem biopsies, respectively. Lastly, our data provide evidence that at least two phenotypically distinct populations of Mtb bacilli exist in vivo .

8.
Nat Commun ; 14(1): 5472, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673914

ABSTRACT

Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.


Subject(s)
NAD , Tuberculosis , Animals , Mice , Homeostasis , Myeloid Cells , Niacinamide/pharmacology , Glycolysis , Lactate Dehydrogenase 5
9.
EMBO Mol Med ; 14(11): e16283, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36285507

ABSTRACT

Our current understanding of the spectrum of TB and COVID-19 lesions in the human lung is limited by a reliance on low-resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID-19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin-embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID-19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID-19 lesions within the framework of the entire lung.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humans , Lung/diagnostic imaging , Lung/pathology , Tomography, X-Ray Computed
10.
Front Immunol ; 9: 860, 2018.
Article in English | MEDLINE | ID: mdl-29774023

ABSTRACT

Iron is an essential factor for the growth and virulence of Mycobacterium tuberculosis (Mtb). However, little is known about the mechanisms by which the host controls iron availability during infection. Since ferritin heavy chain (FtH) is a major intracellular source of reserve iron in the host, we hypothesized that the lack of FtH would cause dysregulated iron homeostasis to exacerbate TB disease. Therefore, we used knockout mice lacking FtH in myeloid-derived cell populations to study Mtb disease progression. We found that FtH plays a critical role in protecting mice against Mtb, as evidenced by increased organ burden, extrapulmonary dissemination, and decreased survival in Fth-/- mice. Flow cytometry analysis showed that reduced levels of FtH contribute to an excessive inflammatory response to exacerbate disease. Extracellular flux analysis showed that FtH is essential for maintaining bioenergetic homeostasis through oxidative phosphorylation. In support of these findings, RNAseq and mass spectrometry analyses demonstrated an essential role for FtH in mitochondrial function and maintenance of central intermediary metabolism in vivo. Further, we show that FtH deficiency leads to iron dysregulation through the hepcidin-ferroportin axis during infection. To assess the clinical significance of our animal studies, we performed a clinicopathological analysis of iron distribution within human TB lung tissue and showed that Mtb severely disrupts iron homeostasis in distinct microanatomic locations of the human lung. We identified hemorrhage as a major source of metabolically inert iron deposition. Importantly, we observed increased iron levels in human TB lung tissue compared to healthy tissue. Overall, these findings advance our understanding of the link between iron-dependent energy metabolism and immunity and provide new insight into iron distribution within the spectrum of human pulmonary TB. These metabolic mechanisms could serve as the foundation for novel host-directed strategies.


Subject(s)
Apoferritins/immunology , Iron/metabolism , Lung/pathology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Animals , Apoferritins/genetics , Apoferritins/metabolism , Case-Control Studies , Disease Models, Animal , Disease Susceptibility/immunology , Disease Susceptibility/microbiology , Energy Metabolism/immunology , Female , Ferritins , Healthy Volunteers , Hepcidins/metabolism , Humans , Iron/analysis , Iron/immunology , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
11.
S Afr Med J ; 106(9): 895-9, 2016 Aug 04.
Article in English | MEDLINE | ID: mdl-27601116

ABSTRACT

BACKGROUND: Child mortality trends in South Africa (SA) show a decrease, but remain high and appear to have plateaued. To attain the new sustainable development goals, we need a better understanding of causes of death and the associated factors. OBJECTIVES: To describe the SA child death review (CDR) pilot, the pattern of child deaths reviewed and the factors associated with these deaths. METHODS: CDR teams were established at two pilot sites, Salt River mortuary (Western Cape Province) and Phoenix mortuary (KwaZulu-Natal Province). All child deaths were reviewed by a multidisciplinary team at the pilot sites for the period 1 January 2014 - 31 December 2014. RESULTS: The CDR pilot reviewed 711 cases. Over half (53.3%) were natural deaths, as opposed to 42.6% non-natural deaths. Most infant deaths (83.9%) were due to natural causes, while 91.7% of deaths in the 15 - 17-year-old age group were due to injuries. The leading cause of deaths reviewed (30.8%) was respiratory tract infection (RTI), mainly among infants (51.6%). Homicide was the second most common cause of death and affected children of all ages, with the highest burden (52.8%) in the 15 - 17-year age group. Child abuse and neglect accounted for 11.3% of deaths. RTI was shown to be more likely after the neonatal period (odds ratio (OR) 2.92; p<0.000) and in preterm infants (OR 1.98; p=0.005). CONCLUSIONS: CDR teams have been effective in improving identification of the causes of out-of-hospital deaths, as well as by identifying remediable factors critical to reducing child deaths further.

SELECTION OF CITATIONS
SEARCH DETAIL