Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38605641

ABSTRACT

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully length messenger RNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in polymerase chain reaction (PCR) amplification, barcode read errors and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.


Subject(s)
Genome , RNA , RNA-Seq , Sequence Analysis, RNA , Computer Simulation , RNA/genetics , High-Throughput Nucleotide Sequencing
2.
FASEB J ; 37(2): e22753, 2023 02.
Article in English | MEDLINE | ID: mdl-36624683

ABSTRACT

Fibroblasts are stromal cells abundant throughout tissues, including the lungs. Fibroblasts are integral coordinators of immune cell recruitment through chemokine secretion. Circadian rhythms direct the recruitment of immune cells to the lung, which in turn impacts response to infection and survival. Although fibroblasts display robust circadian rhythms, the contribution of the fibroblast molecular clock to lung-specific migration of immune cells and recruitment remains to be established. Mice challenged intranasally with lipopolysaccharide (LPS) at dusk showed increased expression of the pro-inflammatory cytokine IL-1ß and chemokine CXCL5 in the lung, which was accompanied by increased neutrophil recruitment. Primary lung fibroblasts with knockdown of the core clock gene Bmal1 and immortalized Bmal1-/- lung fibroblasts also displayed increased Cxcl5 expression under IL-1ß stimulation. Conditioned media obtained from IL-1ß-stimulated Bmal1-/- immortalized fibroblasts-induced greater neutrophil migration compared with Bmal1+/+ lung fibroblast controls. Phosphorylation of the NF-κB subunit, p65, was enhanced in IL-1ß-stimulated Bmal1-/- lung fibroblasts, and pharmacological inhibition of NF-κB attenuated the enhanced CXCL5 production and neutrophil recruitment observed in these cells. Collectively, these results demonstrate that Bmal1 represses NF-κB activity in lung fibroblasts to control chemokine expression and immune cell recruitment during an inflammatory response.


Subject(s)
ARNTL Transcription Factors , NF-kappa B , Animals , Mice , Neutrophil Infiltration , ARNTL Transcription Factors/genetics , Fibroblasts , Cell Movement , Circadian Rhythm
3.
J Pharmacol Exp Ther ; 386(2): 198-204, 2023 08.
Article in English | MEDLINE | ID: mdl-37105582

ABSTRACT

Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Pilot Projects , Proteomics , Antibodies, Viral , Immunoglobulin G , Vaccination , Immunity , Anti-Inflammatory Agents
4.
J Immunol ; 200(2): 595-606, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29203513

ABSTRACT

Bone remodeling comprises balanced activities between osteoclasts and osteoblasts, which is regulated by various factors, including hormones and cytokines. We previously reported that IL-3 inhibits osteoclast differentiation and pathological bone loss. IL-3 also enhances osteoblast differentiation and bone formation from mesenchymal stem cells. However, the role of IL-3 in regulation of osteoblast-osteoclast interactions and underlying mechanisms is not yet delineated. In this study, we investigated the role of IL-3 on the regulation of osteoblast-specific molecules, receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG) that modulate bone homeostasis. We found that IL-3 increases RANKL expression at both the transcriptional and translational levels, and it showed no effect on OPG expression in calvarial osteoblasts. The increased RANKL expression by IL-3 induces mononuclear osteoclasts; however, it does not induce multinuclear osteoclasts. Interestingly, IL-3 decreases soluble RANKL by reducing ectodomain shedding of membrane RANKL through downregulation of metalloproteases mainly a disintegrin and metalloproteinase (ADAM)10, ADAM17, ADAM19, and MMP3. Moreover, IL-3 increases membrane RANKL by activating the JAK2/STAT5 pathway. Furthermore, IL-3 enhances RANKL expression in mesenchymal stem cells of wild-type mice but not in STAT5a knockout mice. Interestingly, IL-3 restores RANKL expression in adult mice by enhancing bone-specific RANKL and decreasing serum RANKL. Furthermore, IL-3 increases the serum OPG level in adult mice. Thus, our results reveal, to our knowledge for the first time, that IL-3 differentially regulates two functional forms of RANKL through metalloproteases and the JAK2/STAT5 pathway, and it helps in restoring the decreased RANKL/OPG ratio in adult mice. Notably, our studies indicate the novel role of IL-3 in regulating bone homeostasis in important skeletal disorders.


Subject(s)
Interleukin-3/metabolism , Janus Kinase 2/metabolism , Matrix Metalloproteinases/metabolism , Osteoblasts/metabolism , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , STAT5 Transcription Factor/metabolism , Animals , Cells, Cultured , Coculture Techniques , Gene Expression , Interleukin-3/pharmacology , Mice , Mice, Transgenic , Osteoblasts/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , RANK Ligand/blood , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , Signal Transduction/drug effects
5.
J Gen Virol ; 98(2): 179-189, 2017 02.
Article in English | MEDLINE | ID: mdl-28284234

ABSTRACT

Hypervariable region 1 (HVR1) is one of the potential neutralization domains in the E2 glycoprotein of hepatitis C virus (HCV). Point mutations of the HVR1 can lead to humoral immune escape in HCV-infected patients. In this study, we segregated the chronically infected viraemic sera from HCV-infected patients into populations of antibody-free virus and antibody-associated virus (AAV) and mapped potential epitopes within the E1E2 gene junction of AAV sequences (residues 364-430). Furthermore, we generated HCV pseudoparticles (HCVpp) derived from AAV sequences to assess their infectivity. We studied the neutralization potential of virus-free Fab obtained from antibody-virus complexes, in the HCVpp system. We observed selective targeting of clonotypic HCV variants from the quasispecies pool. Moreover, we identified potential neutralizing epitopes within the HVR1 and an additional epitope that overlapped with a broadly neutralizing AP33 epitope (amino acid 412-423 in E2). We observed a marked difference in the infectivity of HCVpp generated using E1E2 sequences isolated from AAV. We document reduction in the infectivity of HCVpp-H77 and HCVpp derived from AAV sequences when challenged with virus-free Fab. Our results provide novel insights into the complexities of engagement between HCV and the humoral immune system.


Subject(s)
Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Hepatitis C, Chronic/immunology , Immunity, Humoral , Viral Envelope Proteins/immunology , Viral Proteins/immunology , Amino Acid Sequence , Endopeptidase K/chemistry , Epitope Mapping , Hepacivirus/genetics , Hepatitis C, Chronic/virology , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Neutralization Tests , Serum/chemistry , Serum/immunology , Viral Envelope Proteins/genetics , Viral Proteins/genetics , Viremia/immunology
6.
J Gen Virol ; 97(6): 1345-1349, 2016 06.
Article in English | MEDLINE | ID: mdl-26945008

ABSTRACT

Longitudinal analysis of chronic hepatitis C virus (HCV) infection has shown that the virus has several adaptive strategies that maintain persistence and infectivity over time. We examined four serum samples from the same chronically infected HCV genotype 4a patient for the presence of IgG antibody-associated virus. RNA was isolated from antibody-associated and antibody-free virions. Subsequent to sequence analysis, 27 aa hypervariable region 1 (HVR1) peptides were used to test the humoral immune escape. We demonstrated that differential peptide binding of Fab was associated with a single amino acid change. We provide direct evidence of natural humoral immune escape by HCV within HVR1.


Subject(s)
Hepacivirus/immunology , Immune Evasion , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutation, Missense , Viral Proteins/genetics , Viral Proteins/immunology , Hepacivirus/genetics , Hepatitis C Antibodies/blood , Humans , Longitudinal Studies , RNA, Viral/genetics , Sequence Analysis, DNA
7.
mSystems ; 8(2): e0092822, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36861992

ABSTRACT

In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics: the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within 2 weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last 2 decades in particular and suggest a new era in vaccines against emerging pathogens. IMPORTANCE The SARS-CoV-2 pandemic has caused untold damage globally, presenting unusual demands on but also unique opportunities for vaccine development. The development, production, and distribution of vaccines are imperative to saving lives, preventing severe illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Although vaccine technologies that provide the DNA or RNA sequence of an antigen had never previously been approved for use in humans, they have played a major role in the management of SARS-CoV-2. In this review, we discuss the history of these vaccines and how they have been applied to SARS-CoV-2. Additionally, given that the evolution of new SARS-CoV-2 variants continues to present a significant challenge in 2022, these vaccines remain an important and evolving tool in the biomedical response to the pandemic.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Vaccines , Nucleic Acid-Based Vaccines , Pandemics/prevention & control , mRNA Vaccines
8.
mSystems ; 8(2): e0092722, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36861991

ABSTRACT

Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, in either an inactivated or an attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion article (H. M. Rando, R. Lordan, L. Kolla, E. Sell, et al., mSystems 8:e00928-22, 2023, https://doi.org/10.1128/mSystems.00928-22), we review the more recent and novel development of nucleic acid-based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2. IMPORTANCE The development, production, and distribution of vaccines is imperative to saving lives, preventing illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Vaccines that use cutting-edge biotechnology have played an important role in mitigating the effects of SARS-CoV-2. However, more traditional methods of vaccine development that were refined throughout the 20th century have been especially critical to increasing vaccine access worldwide. Effective deployment is necessary to reducing the susceptibility of the world's population, which is especially important in light of emerging variants. In this review, we discuss the safety, immunogenicity, and distribution of vaccines developed using established technologies. In a separate review, we describe the vaccines developed using nucleic acid-based vaccine platforms. From the current literature, it is clear that the well-established vaccine technologies are also highly effective against SARS-CoV-2 and are being used to address the challenges of COVID-19 globally, including in low- and middle-income countries. This worldwide approach is critical for reducing the devastating impact of SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics/prevention & control , Vaccine Development , Vaccines, Subunit , Nucleic Acid-Based Vaccines
9.
ArXiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36263086

ABSTRACT

In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing SARS-CoV-2 pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics; the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within two weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines and in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last two decades in particular and suggest a new era in vaccines against emerging pathogens.

10.
ArXiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36034485

ABSTRACT

Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against the SARS-CoV-2 virus. A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, either in an inactivated or attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion manuscript, we review the more recent and novel development of nucleic-acid based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic-acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2.

11.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162982

ABSTRACT

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking, and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully-length mRNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM, or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in PCR amplification, barcode read errors, and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.

12.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37463053

ABSTRACT

Optimal lung repair and regeneration are essential for recovery from viral infections, including influenza A virus (IAV). We have previously demonstrated that acute inflammation and mortality induced by IAV is under circadian control. However, it is not known whether the influence of the circadian clock persists beyond the acute outcomes. Here, we utilize the UK Biobank to demonstrate an association between poor circadian rhythms and morbidity from lower respiratory tract infections, including the need for hospitalization and mortality after discharge; this persists even after adjusting for common confounding factors. Furthermore, we use a combination of lung organoid assays, single-cell RNA sequencing, and IAV infection in different models of clock disruption to investigate the role of the circadian clock in lung repair and regeneration. We show that lung organoids have a functional circadian clock and the disruption of this clock impairs regenerative capacity. Finally, we find that the circadian clock acts through distinct pathways in mediating lung regeneration - in tracheal cells via the Wnt/ß-catenin pathway and through IL-1ß in alveolar epithelial cells. We speculate that adding a circadian dimension to the critical process of lung repair and regeneration will lead to novel therapies and improve outcomes.


Subject(s)
Circadian Clocks , Influenza A virus , Lung/metabolism , Alveolar Epithelial Cells , Circadian Rhythm , Circadian Clocks/genetics , Influenza A virus/physiology , Regeneration
13.
Arch Virol ; 157(5): 855-68, 2012 May.
Article in English | MEDLINE | ID: mdl-22307170

ABSTRACT

Cotton leaf curl disease (CLCuD) is a major limitation to cotton production on the Indian subcontinent. A survey for viruses causing CLCuD was conducted during the 2009 and 2010 cropping seasons in the northwestern Indian cotton-growing belt in the states of Punjab, Haryana and Rajasthan. Partial sequences of 258 and full-length sequences of 22 virus genomes were determined. This study shows that the resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) is now the dominant virus in many fields. The spread and establishment of the mutant CLCuBuV in northwestern India, the variation in its genomic sequence, its virulence and infectivity, and the implications for cotton breeding are discussed.


Subject(s)
Begomovirus/isolation & purification , Gossypium/virology , Plant Diseases/virology , Begomovirus/classification , Begomovirus/genetics , Genome, Viral , Gossypium/genetics , Gossypium/immunology , India , Molecular Sequence Data , Phylogeny , Plant Diseases/genetics , Plant Diseases/immunology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/virology
14.
Clin Nutr ESPEN ; 51: 17-27, 2022 10.
Article in English | MEDLINE | ID: mdl-36184201

ABSTRACT

Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), research has focused on understanding the etiology of coronavirus disease 2019 (COVID-19). Identifying and developing prophylactic and therapeutics strategies to manage the pandemic is still of critical importance. Among potential targets, the role of the gut and lung microbiomes in COVID-19 has been questioned. Consequently, probiotics were touted as potential prophylactics and therapeutics for COVID-19. In this review we highlight the role of the gut and lung microbiome in COVID-19 and potential mechanisms of action of probiotics. We also discuss the progress of ongoing clinical trials for COVID-19 that aim to modulate the microbiome using probiotics in an effort to develop prophylactic and therapeutic strategies. To date, despite the large interest in this area of research, there is promising but limited evidence to suggest that probiotics are an effective prophylactic or treatment strategy for COVID-19. However, the role of the microbiome in pathogenesis and as a potential target for therapeutics of COVID-19 cannot be discounted.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Probiotics , Humans , Pandemics/prevention & control , Probiotics/therapeutic use , SARS-CoV-2
15.
Biomater Adv ; 141: 213099, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36088719

ABSTRACT

Skeletal disorders represent a variety of degenerative diseases that affect bone and cartilage homeostasis. The regenerative capacity of bone is affected in osteoporosis, osteoarthritis, rheumatoid arthritis, bone fractures, congenital defects, and bone cancers. There is no viable, non-invasive treatment option and bone regeneration requires surgical intervention with the implantation of bone grafts. Incorporating nanoparticles in bone grafts have improved fracture healing by providing fine structures for bone tissue engineering. It is currently a revolutionary finding in the field of regenerative medicine. Silver nanoparticles (AgNPs) have garnered particular attention due to their well-known anti-microbial and potential osteoinductive properties. In addition, AgNPs have been demonstrated to regulate the proliferation and differentiation of mesenchymal stem cells (MSCs) involved in bone regeneration. Furthermore, AgNPs have shown toxicity towards cancer cells derived from bone. In the last decade, there have been multiple studies focusing on the effect of nanoparticles on the proliferation and/or differentiation of MSCs and bone cancer cells; however, the specific studies with AgNPs are limited. Although the reported investigations show promising in vitro and in vivo potential of AgNPs for application in bone regeneration, more studies are required to ensure their implications in bone tissue engineering. This review aims to highlight the current advances related to the production of AgNPs and their effect on MSCs and bone cancer cells, which will potentiate their possible implications in orthopedics. Moreover, this review article evaluates the future of AgNPs in bone tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Metal Nanoparticles , Bone and Bones , Metal Nanoparticles/therapeutic use , Silver/pharmacology , Tissue Engineering
16.
J Pharm Bioallied Sci ; 13(Suppl 2): S933-S937, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35017901

ABSTRACT

INTRODUCTION: Successful treatment in the endodontics and periodontics depends on the periapical status. Hence, in the present meta-analysis, we evaluate the various bone regenerative materials in the periapical surgeries. MATERIALS AND METHODS: Online data were collected from the search engines of EBSCO, PubMed, Google Scholar, and Scopus. The searched terms were bone regenerative, bone grafts, bio materials, periapical surgery, and endodontic surgery. Based on the PRISMA guidelines, the meta-analysis was performed. The studies for the past 10 years were considered that included at least 10 patients. The translatable articles were included that had the human studies that were clinical studies and/or trials and also had the bone regenerative materials used in the procedure. RESULTS: A total of 475 articles were selected, of which 30 were selected based on the criteria. Of these, after the removal of the 21 duplicate articles, 9 articles were finalized. The meta-analysis showed that when the bone graft materials are used along with the barriers for the regeneration, there were observed higher success rates. CONCLUSIONS: The bone regenerative materials can be used for the successful outcome for the periapical surgeries. The guided tissue regeneration along with the bone regenerative materials may aid in the good prognosis of the endodontic and periodontal cases.

17.
J Biol Rhythms ; 36(1): 23-34, 2021 02.
Article in English | MEDLINE | ID: mdl-33480287

ABSTRACT

Circadian rhythms are evolutionarily conserved anticipatory systems that allow the host to prepare and respond to threats in its environment. This article summarizes a European Biological Rhythms Society (EBRS) workshop held in July 2020 to review current knowledge of the interplay between the circadian clock and viral infections to inform therapeutic strategies against SARS-CoV-2 and COVID-19. A large body of work supports the role of the circadian clock in regulating various aspects of viral replication, host responses, and associated pathogenesis. We review the evidence describing the multifaceted role of the circadian clock, spanning host susceptibility, antiviral mechanisms, and host resilience. Finally, we define the most pressing research questions and how our knowledge of chronobiology can inform key translational research priorities.


Subject(s)
COVID-19/immunology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Immune System/immunology , SARS-CoV-2/immunology , Animals , COVID-19/epidemiology , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , Immune System/metabolism , Immune System/virology , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Replication/genetics , Virus Replication/immunology
18.
J Public Health Dent ; 81(3): 214-223, 2021 09.
Article in English | MEDLINE | ID: mdl-33305385

ABSTRACT

OBJECTIVES: a) To evaluate the item and scale properties of the Oral Health Literacy Adults Questionnaire (OHL-AQ) in an adult general population. b) To determine precision or accuracy of the respondents' estimated scores along the Oral Health Literacy (OHL) spectrum using item response theory (IRT) modeling. METHODS: Survey data were collected from a convenience sample of 405 adult attendees of the 2014 Minnesota State Fair. We used the two-parameter logistic (2PL) model for the item response theory (IRT) analyses of OHL-AQ data and calibrated items to estimate model-based item difficulty and discrimination parameters. Item and scale properties were also assessed by plotting and interpreting item characteristic curves (ICCs), test characteristic curve (TCC), and test information function (TIF). RESULTS: Based on interpretation of model coefficients, statistical testing, and model fit criteria, we deemed the 2PL model superior and selected this model to examine item and scale properties. Scale reliability was shown to be good through the test information function (TIF). TIF from our analysis showed that higher levels of OHL were measured less precisely than lower levels of OHL. CONCLUSION: We demonstrated OHL-AQ as a whole has promising psychometric properties. However, for equiprecise measurement across the scale range, the scale needs more items for measuring higher levels of OHL.


Subject(s)
Health Literacy , Adult , Humans , Oral Health , Psychometrics , Reproducibility of Results , Surveys and Questionnaires
19.
Elife ; 102021 03 02.
Article in English | MEDLINE | ID: mdl-33650487

ABSTRACT

Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.


Subject(s)
Circadian Clocks/genetics , Hyperoxia/complications , Hyperoxia/virology , Influenza A virus/physiology , Orthomyxoviridae Infections/complications , Alveolar Epithelial Cells , Animals , Animals, Newborn , Disease Models, Animal , Hyperoxia/pathology , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/virology
20.
Front Public Health ; 9: 751451, 2021.
Article in English | MEDLINE | ID: mdl-34976917

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, providing safe in-person schooling has been a dynamic process balancing evolving community disease burden, scientific information, and local regulatory requirements with the mandate for education. Considerations include the health risks of SARS-CoV-2 infection and its post-acute sequelae, the impact of remote learning or periods of quarantine on education and well-being of children, and the contribution of schools to viral circulation in the community. The risk for infections that may occur within schools is related to the incidence of SARS-CoV-2 infections within the local community. Thus, persistent suppression of viral circulation in the community through effective public health measures including vaccination is critical to in-person schooling. Evidence suggests that the likelihood of transmission of SARS-CoV-2 within schools can be minimized if mitigation strategies are rationally combined. This article reviews evidence-based approaches and practices for the continual operation of in-person schooling.


Subject(s)
COVID-19 , Pandemics , Child , Humans , Pandemics/prevention & control , Quarantine , SARS-CoV-2 , Schools
SELECTION OF CITATIONS
SEARCH DETAIL