ABSTRACT
Ichthyosis follicularis (IF) manifests as generalized spiny follicular projections found in syndromic diseases secondary to SREBF1 and MBTPS2 mutations. We sought the genetic cause of IF in two distinct families from a cohort of 180 patients with ichthyosis. In Family 1, the proband (Patient 1) presented with IF, bilateral sensorineural hearing loss and punctate palmoplantar keratoderma. Using DNA from peripheral blood lymphocytes, two compound heterozygous mutations, c.526A>G and c.35delG, were discovered in GJB2. In Family 2, the proband (Patient 2) presented with a previously unreported IF phenotype in the context of keratitis-ichthyosis-deafness syndrome, and whole-exome sequencing found a de novo heterozygous mutation, c.148G>A in GJB2. Histopathology was consistent with porokeratotic eccrine ostial and dermal duct naevus (PEODDN) and IF in Patients 1 and 2, respectively. Our findings add to the clinical and histopathological spectrum of IF and emphasize the association of PEODDN-like entities with GJB2 variants.
Subject(s)
Connexin 26 , Deafness , Hearing Loss, Sensorineural , Ichthyosis , Connexin 26/genetics , Deafness/genetics , Deafness/pathology , Hearing Loss, Sensorineural/genetics , Humans , Ichthyosis/genetics , Ichthyosis/pathology , Mutation , SyndromeABSTRACT
Keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the GJB2 gene encoding connexin 26, a component of transmembrane hemichannels which form gap junction channels, critical for cell-cell communication. Here, we report two patients from two distinct families with KID syndrome with the same GJB2 mutation (p.Asp50Asn); in both cases the mutation was de novo, as the parents depicted the wild-type allele only. The patients' cutaneous manifestations were strikingly different illustrating the wide spectrum of phenotype of these patients, even with the same GJB2 mutation. One of the patients was treated with acitretin with dramatic improvement in his skin findings, illustrating the role of oral acitretin in treatment of patients with KID syndrome. Collectively, these patients attest to the phenotypic spectrum of KID syndrome, with therapeutic perspective.
Subject(s)
Deafness , Ichthyosis , Keratitis , Connexin 26/genetics , Deafness/diagnosis , Deafness/drug therapy , Deafness/genetics , Humans , Ichthyosis/diagnosis , Ichthyosis/drug therapy , Ichthyosis/genetics , Keratitis/diagnosis , Keratitis/drug therapy , Keratitis/genetics , Mutation , PhenotypeABSTRACT
HPVs are DNA viruses include approximately 450 types that are classified into 5 genera (α-, ß-, γ-, µ-, and ν-HPV). The γ- and ß-HPVs are present in low copy numbers in healthy individuals; however, in patients with an inborn error of immunity, certain species of ß-HPVs can cause epidermodysplasia verruciformis (EV), manifesting as recalcitrant cutaneous warts and skin cancer. EV presents as either typical or atypical. Manifestations of typical EV are limited to the skin and are caused by abnormal keratinocyte-intrinsic immunity to ß-HPVs due to pathogenic sequence variants in TMC6, TMC8, or CIB1. We applied a transcriptome-based computational pipeline, VirPy, to RNA extracted from normal-appearing skin and wart samples of patients with typical EV to explore the viral and human genetic determinants. In 26 patients, 9 distinct biallelic mutations were detected in TMC6, TMC8, and CIB1, 7 of which are previously unreported to our knowledge. Additionally, 20 different HPV species, including 3 α-HPVs, 16 ß-HPVs, and 1 γ-HPV, were detected, 8 of which are reported here for the first time to our knowledge in patients with EV (ß-HPV-37, -47, -80, -151, and -159; α-HPV-2 and -57; and γ-HPV-128). This study expands the TMC6, TMC8, and CIB1 sequence variant spectrum and implicates new HPV subtypes in the pathogenesis of typical EV.
Subject(s)
Epidermodysplasia Verruciformis , Papillomavirus Infections , Humans , Epidermodysplasia Verruciformis/genetics , Epidermodysplasia Verruciformis/pathology , Papillomavirus Infections/genetics , Transcriptome , Virome , Membrane Proteins/geneticsABSTRACT
Severe viral infections of the skin can occur in patients with inborn errors of immunity (IEI). We report an all-in-one whole-transcriptome sequencing-based method by RNA-Seq on a single skin biopsy for concomitantly identifying the cutaneous virome and the underlying IEI. Skin biopsies were obtained from healthy and lesional skin from patients with cutaneous infections suspected to be of viral origin. RNA-Seq was utilized as the first-tier strategy for unbiased human genome-wide rare variant detection. Reads unaligned to the human genome were utilized for the exploration of 926 viruses in a viral genome catalog. In 9 families studied, the patients carried pathogenic variants in 6 human IEI genes, including IL2RG, WAS, CIB1, STK4, GATA2, and DOCK8. Gene expression profiling also confirmed pathogenicity of the human variants and permitted genome-wide homozygosity mapping, which assisted in identification of candidate genes in consanguineous families. This automated, online, all-in-one computational pipeline, called VirPy, enables simultaneous detection of the viral triggers and the human genetic variants underlying skin lesions in patients with suspected IEI and viral dermatosis.
Subject(s)
Skin Diseases , Transcriptome , Consanguinity , Homozygote , Humans , Skin Diseases/genetics , Exome SequencingABSTRACT
Epidermolysis bullosa (EB) is a genotypically heterogeneous group of disorders characterized by cutaneous blistering and erosions with a tremendous spectrum of severity. One of the distinct forms of EB, Kindler EB (KEB), manifests with blistering and poikiloderma; this subtype of EB is caused by mutations in the FERMT1 gene encoding kindlin-1. In this study, we investigated a patient clinically diagnosed as KEB with reduced FERMT1 gene expression and intensity of immunostaining for kindlin-1. Transmission electron microscopy showed lamina densa reduplication, frequently observed in KEB. However, no mutations were identified in FERMT1 in this patient with consanguineous parents, and this gene resided outside of genomic regions of homozygosity (ROH). Instead, whole-exome sequencing and homozygosity mapping identified a homozygous sequence variant at the +4 position of intron 2 in the USB1 gene, encoding an exoribonuclease required for processing of U6 snRNA, a critical component of spliceosomes. Examination of the patient's RNA by RNA-Seq confirmed the pathogenicity of this variant, causing aberrant splicing predicted to result in loss of function of USB1. Mutations in this gene have been reported in patients with poikiloderma and neutropenia, with a few reported cases in association with skin fragility, a condition distinct from the KEB phenotype. Transcriptome analysis revealed that several genes, expressed in the cutaneous basement membrane zone and previously associated with different subtypes of EB, were differentially downregulated at the mRNA level. EB-associated mRNA downregulation was confirmed at protein levels by skin immunofluorescence. These observations provide a novel mechanism for blistering and erosions in the skin as a result reduced presence of adhesion complexes critical for stable association of epidermis and dermis at the level of cutaneous basement membrane zone.