Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Biol Evol ; 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219870

ABSTRACT

Changes in the epigenome can affect the phenotype without the presence of changes in the genomic sequence. Given the high identity of the human and chimpanzee genome sequences, a substantial portion of their phenotypic divergence likely arises from epigenomic differences between the two species. In this study, the transcriptome and epigenome were determined for induced pluripotent stem cells (iPSCs) generated from human and chimpanzee individuals. The transcriptome and epigenomes for trimethylated histone H3 at lysine-4 (H3K4me3) and lysine-27 (H3K27me3) showed high levels of similarity between the two species. However, there were some differences in histone modifications. Although such regions, in general, did not show significant enrichment of interspecies nucleotide variations, gains in binding motifs for pluripotency-related transcription factors, especially POU5F1 and SOX2, were frequently found in species-specific H3K4me3 regions. We also revealed that species-specific insertions of retrotransposons, including the LTR5_Hs subfamily in human and a newly identified LTR5_Pt subfamily in chimpanzee, created species-specific H3K4me3 regions associated with increased expression of nearby genes. Human iPSCs have more species-specific H3K27me3 regions, resulting in more abundant bivalent domains. Only a limited number of these species-specific H3K4me3 and H3K27me3 regions overlap with species-biased enhancers in cranial neural crest cells, suggesting that differences in the epigenetic state of developmental enhancers appear late in development. Therefore, iPSCs serve as a suitable starting material for studying evolutionary changes in epigenome dynamics during development.

2.
Differentiation ; 128: 33-42, 2022.
Article in English | MEDLINE | ID: mdl-36265360

ABSTRACT

Non-human primates are important models for investigations of neural development and evolution, and the use of Japanese macaque monkeys has especially contributed to the advancement of neuroscience studies. However, these studies are restricted by the number of animals able to be evaluated and the invasiveness of the methodologies. Induced pluripotent stem cells (iPSCs) can provide an alternative strategy for investigating neural development in vitro. We have established direct neurosphere (dNS) formation cultures of primate iPSCs as an in vitro model of early neurodevelopment in primate species. Here, we used dNS formation and neuronal differentiation cultures established from Japanese macaque iPSCs (jm-iPSCs) to investigate the usefulness of these cells as an in vitro model of early neural development. Time-course analyses of developmental potency and gene expression kinetics were performed during dNS formation culture of jm-iPSCs. During a 1-week culture, jm-iPSC-derived dNSs became neurogenic by day 3 and underwent stepwise expression changes of key developmental regulators along early neural development in a similar manner to chimpanzee dNS formation previously reported. Meanwhile, a subset of genes, including CYP26A1 and NPTX1, showed differential expression propensity in Japanese macaque, chimpanzee, and human iPSC-derived dNSs. Spontaneous upregulation of NOTCH signaling-associated genes HES5 and DLL1 was also observed in neuronal differentiation cultures of Japanese macaque but not chimpanzee dNSs, possibly reflecting the earlier neurogenic competence in Japanese macaques. The use of jm-iPSCs provides an alternative approach to neurological studies of primate development. Furthermore, jm-iPSCs can be used to investigate species differences in early neural development that are key to primate evolution.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Macaca fuscata/genetics , Macaca , Haplorhini , Neurogenesis/genetics , Cell Differentiation/genetics
3.
Fish Shellfish Immunol ; 118: 405-410, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34582977

ABSTRACT

The mechanism via which the mothers of viviparous animals regulate the internal environment of pregnancy-associated organs for maintaining offspring growth is poorly understood. Environmental niches in organs contain fluid components for supporting embryonic growth; however, they may serve as nutrients for microbes. Therefore, microbial control is essential in viviparous animals to reduce the risk of infection in the ovarian lumen. Its importance may be higher than that in the case of oviparous animals. In this study, we investigated the antimicrobial factors in a viviparous teleost, Xenotoca eiseni. Four transcripts of the liver-expressed antimicrobial peptide (LEAP) were identified via RNA-Seq analysis. Some of the genes were expressed in the ovaries or intraovarian embryos of the fish. In particular, high expression of leap1a was detected in the ovaries of both pregnant and non-pregnant fish. Moreover, the ovary extracts from X. eiseni and transformed leap genes exhibited antimicrobial activity against Escherichia coli. Our results suggest that viviparous teleosts utilize antimicrobial peptides to reduce the risk of infection in the ovarian lumen.


Subject(s)
Cyprinodontiformes , Ovary , Animals , Antimicrobial Peptides , Female , Liver , Viviparity, Nonmammalian
4.
Zoolog Sci ; 38(1): 67-71, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33639720

ABSTRACT

Almost all viviparous species possess male external genitalia; for example, the mammalian penis is an intromittent organ. Some live-bearing bony fish use their anal fins to assist in mating and internal fertilization. We previously reported a male-specific asymmetric curvature at the posterior end of the anal fin in Xenotoca eiseni, a viviparous fish of the family Goodeidae. However, three other goodeid species, Xenotoca melanosoma, Zoogoneticus quitzeoensis, and Chapalichthys pardalis, examined in that study possessed lesser anal fin curvature modifications as compared to those in the anal fin of X. eiseni. Here, we report the second case of acute-angled curvature modification of the male anal fin in the family Goodeidae. We obtained a dead specimen of the goodeid species Xenotoca variata from a city zoo in Japan, and the morphological and histological analyses indicated an acute-angled asymmetric curvature of the posterior end of the anal fin in X. variata, similar to that observed in X. eiseni in the previous study. However, in our previous report, obtuse-angled modification was only observed in one other Xenotoca species, X. melanosoma, and two species belonging to other genera, Z. quitzeoensis and C. pardalis. Therefore, our findings suggest that the acute-angled curvature in the male anal fin has been developed in the genus Xenotoca.


Subject(s)
Animal Fins/anatomy & histology , Cyprinodontiformes/anatomy & histology , Animals , Male , Sex Characteristics
5.
Differentiation ; 112: 67-76, 2020.
Article in English | MEDLINE | ID: mdl-32045848

ABSTRACT

To induce and maintain naïve pluripotency in mouse embryonic and induced pluripotent stem cells (ESCs/iPSCs), chemically defined N2B27 medium with PD0325901, CHIR99021, and leukemia inhibitory factor (2i/LIF) is a classic and simple condition. However, this method cannot be simply extrapolated to human ESCs/iPSCs that are principally stabilized in primed pluripotency and become primitive neuroepithelium-like cells in N2B27+2i/LIF culture. Here, we assessed iPSC reprogramming of fibroblasts from chimpanzee, our closest living relative, in N2B27+2i/LIF culture. Under this condition, chimpanzee cells formed alkaline phosphatase-positive dome-shaped colonies. The colony-forming cells could be stably expanded by serial passaging without a ROCK inhibitor. However, their gene expression was distinct from iPSCs and neuroepithelium. They expressed the OCT3/4 transgene and a subset of transcripts associated with pluripotency, mesenchymal-epithelial transition, and neural crest formation. These cells exhibited a differentiation potential into the three germ layers in vivo and in vitro. The current study demonstrated that iPSC reprogramming in N2B27+2i/LIF culture converted chimpanzee fibroblasts into a multipotent cancerous state with unique gene expression, but not fully pluripotent stem cells.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , Multipotent Stem Cells/cytology , Animals , Benzamides/pharmacology , Cell Differentiation/drug effects , Cellular Reprogramming/drug effects , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Epithelial-Mesenchymal Transition/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Germ Layers/drug effects , Germ Layers/growth & development , Humans , Leukemia Inhibitory Factor/pharmacology , Mice , Multipotent Stem Cells/drug effects , Neural Crest/cytology , Pan troglodytes , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology
6.
In Vitro Cell Dev Biol Anim ; 60(5): 544-554, 2024 May.
Article in English | MEDLINE | ID: mdl-38386235

ABSTRACT

As humans' closest living relatives, chimpanzees offer valuable insights into human evolution. However, technical and ethical limitations hinder investigations into the molecular and cellular foundations that distinguish chimpanzee and human traits. Recently, induced pluripotent stem cells (iPSCs) have emerged as a novel model for functional comparative studies and provided a non-invasive alternative for studying embryonic phenomena. In this study, we generated five new chimpanzee iPSC lines from peripheral blood cells and skin fibroblasts with SeV vectors carrying four reprogramming factors (human OCT3/4, SOX2, KLF4, and L-MYC) and characterized their pluripotency and differentiation potential. We also examined the expression of a human-specific non-coding RNA, HSTR1, which is predicted to be involved in human brain development. Our results show that the chimpanzee iPSCs possess pluripotent characteristics and can differentiate into various cell lineages. Moreover, we found that HSTR1 is expressed in human iPSCs and their neural derivatives but not in chimpanzee counterparts, supporting its possible role in human-specific brain development. As iPSCs are inherently variable due to genetic and epigenetic differences in donor cells or reprogramming procedures, it is essential to expand the number of chimpanzee iPSC lines to comprehensively capture the molecular and cellular properties representative of chimpanzees. Hence, our cells provide a valuable resource for investigating the function and regulation of human-specific transcripts such as HSTR1 and for understanding human evolution more generally.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Pan troglodytes , Animals , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Humans , Cell Line , Species Specificity , Fibroblasts/cytology , Fibroblasts/metabolism , Cellular Reprogramming/genetics
7.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646933

ABSTRACT

Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Retinal Dystrophies , Zebrafish , Animals , Humans , Eye Proteins/genetics , Eye Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Light/adverse effects , Mutation , Organoids/metabolism , Retina/metabolism , Retina/pathology , Retinal Dystrophies/therapy , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism
8.
Stem Cell Res ; 44: 101749, 2020 04.
Article in English | MEDLINE | ID: mdl-32151953

ABSTRACT

Evolutionary developmental biology of our closest living relative, the chimpanzee (Pan troglodytes), is essential for understanding the origin of human traits. However, it is difficult to access developmental events in the chimpanzee in vivo because of technical and ethical restrictions. Induced pluripotent stem cells (iPSCs) offer an alternative in vitro model system to investigate developmental events by overcoming the limitations of in vivo study. Here, we generated chimpanzee iPSCs from adult skin fibroblasts and reconstructed early neural development using in vitro differentiation culture conditions. Chimpanzee iPSCs were established using straightforward methods, namely, lipofection of plasmid vectors carrying human reprogramming factors, combined with maintenance in a comprehensive feeder-free culture. Ultimately, direct neurosphere formation culture induced rapid and efficient differentiation of neural stem cells from chimpanzee iPSCs. Time course analysis of neurosphere formation demonstrated ontogenetic changes in gene expression profiles and developmental potency along an early neural development path from epiblasts to radial glia. Our iPSC culture system is a potent tool for investigating the molecular and cellular foundation underlying chimpanzee early neural development and better understanding of human brain evolution.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Cellular Reprogramming , Fibroblasts , Humans , Neurogenesis , Pan troglodytes
9.
Sci Rep ; 8(1): 12187, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111816

ABSTRACT

Non-human primates are our closest relatives and are of special interest for ecological, evolutionary and biomedical research. The Japanese macaque (Macaca fuscata) has contributed to the progress of primatology and neurosciences over 60 years. Despite this importance, the molecular and cellular basis of the Japanese macaque remains unexplored since useful cellular tools are lacking. Here we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts of the Japanese macaque with Sendai virus or plasmid vectors. The Japanese macaque iPSCs (jm-iPSCs) were established under feeder-free culture conditions, but feeder cells turned out to be essential for their maintenance. The jm-iPSCs formed human iPSC-like flat colonies which were positive for pluripotent antigens including alkaline phosphatase, SSEA4, and TRA-1-81. They also expressed endogenous OCT3/4, SOX2, L-MYC, and KLF4 and other pluripotent marker genes. The potential to differentiate into all three germ layers and neural stem cells was confirmed by embryoid body and neurosphere formation, respectively. The jm-iPSCs will provide a robust in vitro tool for investigating the underlying mechanisms of development and physiology studies with the Japanese macaque.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , Cellular Reprogramming/physiology , Embryoid Bodies/cytology , Feeder Cells , Fibroblasts/cytology , Fibroblasts/metabolism , Germ Layers , Japan , Kruppel-Like Factor 4 , Macaca , Skin/cytology , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL