ABSTRACT
Synaptic phenotypes in living patients with psychiatric disorders are poorly characterized. Excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) is a fundamental component for neurotransmission. We recently developed a positron emission tomography (PET) tracer for AMPAR, [11C]K-2, the first technology to visualize and quantify AMPARs density in living human brain. In this study, we characterized patients with major psychiatric disorders with [11C]K-2. One hundred forty-nine patients with psychiatric disorders (schizophrenia, n = 42; bipolar disorder, n = 37; depression, n = 35; and autism spectrum disorder, n = 35) and 70 healthy participants underwent a PET scan with [11C]K-2 for measurement of AMPAR density. We detected brain regions that showed correlation between AMPAR density and symptomatology scores in each of four disorders. We also found brain areas with significant differences in AMPAR density between patients with each psychiatric disorder and healthy participants. Some of these areas were observed across diseases, indicating that these are commonly affected areas throughout psychiatric disorders. Schizophrenia, bipolar disorder, depression, and autism spectrum disorder are uniquely characterized by AMPAR distribution patterns. Our approach to psychiatric disorders using [11C]K-2 can elucidate the biological mechanisms across diseases and pave the way to develop novel diagnostics and therapeutics based on the synapse physiology.
ABSTRACT
Major depressive disorder affects over 300 million people globally, with approximately 30% experiencing treatment-resistant depression (TRD). Given that impaired neuroplasticity underlies depression, the present study focused on neuroplasticity in the dorsolateral prefrontal cortex (DLPFC). Here, we aimed to investigate the differences in neuroplasticity between 60 individuals with TRD and 30 age- and sex-matched healthy controls (HCs). To induce neuroplasticity, participants underwent a paired associative stimulation (PAS) paradigm involving peripheral median nerve stimulation and transcranial magnetic stimulation (TMS) targeting the left DLPFC. Neuroplasticity was assessed by using measurements combining TMS with EEG before and after PAS. Both groups exhibited significant increases in the early component of TMS-evoked potentials (TEP) after PAS (P < 0.05, paired t-tests with the bootstrapping method). However, the HC group demonstrated a greater increase in TEPs than the TRD group (P = 0.045, paired t-tests). Additionally, event-related spectral perturbation analysis highlighted that the gamma power significantly increased after PAS in the HC group, whereas it was decreased in the TRD group (P < 0.05, paired t-tests with the bootstrapping method). This gamma power modulation revealed a significant group difference (P = 0.006, paired t-tests), indicating an inverse relationship for gamma power modulation. Our findings underscore the impaired neuroplasticity of the DLPFC in individuals with TRD.
Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Dorsolateral Prefrontal Cortex , Electroencephalography/methods , Depression , Prefrontal Cortex/physiology , Neuronal Plasticity/physiologyABSTRACT
OBJECTIVE: Treatment and management for difficult-to-treat depression are challenging, especially in a subset of patients who are at high risk for relapse and recurrence. The conditions that represent this subset are recurrent depressive disorder (RDD) and bipolar disorder (BD). In this context, we aimed to examine the effectiveness of maintenance transcranial magnetic stimulation (TMS) on a real-world clinical basis by retrospectively extracting data from the TMS registry data in Tokyo, Japan. METHODS: Data on patients diagnosed with treatment-resistant RDD and BD who received maintenance intermittent theta burst stimulation (iTBS) weekly after successful treatment with acute iTBS between March 2020 and October 2023 were extracted from the registry. RESULTS: All patients (21 cases: 10 cases with RDD and 11 cases with BD) could sustain response, and 19 of them further maintained remission. In this study, maintenance iTBS did not exacerbate depressive symptoms in any of the cases, but may rather have the effect of stabilizing the mental condition and preventing recurrence. CONCLUSIONS: This case series is of great clinical significance because it is the first study to report on the effectiveness of maintenance iTBS for RDD and BD, with a follow-up of more than 2 years. Further validation with a randomized controlled trial design with a larger sample size is warranted.
Subject(s)
Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Middle Aged , Adult , Bipolar Disorder/therapy , Depressive Disorder, Treatment-Resistant/therapy , Aged , Theta Rhythm , Retrospective StudiesABSTRACT
INTRODUCTION: Predictors of treatment response to intravenous ketamine remain unclear in patients with treatment-resistant depression (TRD); therefore, this study aimed to clarify these predictors using the US National Institutes of Health database of clinical trials. METHODS: Data from a placebo-controlled, double-blind, randomized controlled trial were used to assess the efficacy of intravenous ketamine in adult patients with TRD (NCT01920555). For the analysis, data were used from the participants who had received therapeutic doses of intravenous ketamine (i. e., 0.5 and 1.0 mg/kg). Logistic and multivariable regression analyses were conducted to explore the demographic and clinical factors associated with response to treatment or changes in the Hamilton Depression Rating Scale 6 items (HAM-D-6) total score. RESULTS: This study included 31 patients with TRD (13 women; mean±standard deviation age, 48.4±10.9 years). Logistic regression analysis showed that the age of onset was positively correlated with treatment response after three days of ketamine administration (ß=0.08, p=0.037); however, no association was observed between treatment response and age, sex, baseline HAM-D-6 total score, or dissociative score assessed with the Clinician-Administered Dissociative States Scale 40 min after ketamine infusion. Multiple regression analysis showed that no factors were correlated significantly with the percentage change in the HAM-D-6 total score three days after ketamine administration. DISCUSSION: Later disease onset correlates with a better treatment response three days after ketamine infusion in patients with TRD. Glutamatergic signal transmission may be impaired in patients with an earlier onset of depression, resulting in decreased neuroplasticity, which diminishes ketamine response.
Subject(s)
Depressive Disorder, Treatment-Resistant , Ketamine , Adult , Humans , Female , Middle Aged , Infant, Newborn , Ketamine/therapeutic use , Depression/drug therapy , Antidepressive Agents/therapeutic use , Depressive Disorder, Treatment-Resistant/drug therapy , Double-Blind Method , Treatment Outcome , Infusions, IntravenousABSTRACT
AIM: Although the antidepressant effect of ketamine on treatment-resistant depression (TRD) has been frequently reported in North American and European countries, evidence is scarce among the Asian population. We aimed to evaluate the efficacy and safety of intravenous ketamine in Japanese patients with TRD. METHODS: In this double-blind randomized placebo-controlled trial, 34 Japanese patients with TRD were randomized to receive either intravenous ketamine (0.5 mg/kg) or placebo, administered over 40 min, twice a week, for 2 weeks. The primary outcome was the change in the Montgomery Åsberg Depression Rating Scale (MADRS) total score from baseline to post-treatment. Secondary outcomes included changes in other depressive symptomatology scores and remission, response, and partial response rates. We also examined the association between baseline clinical demographic characteristics and changes in the MADRS total score. RESULTS: Intention-to-treat analysis indicated no significant difference in the decrease in MADRS total score between the groups (-8.1 ± 10.0 vs -2.5 ± 5.2, t[32] = 2.02, P = 0.052), whereas per-protocol analysis showed a significant reduction in the ketamine group compared to the placebo group (-9.1 ± 10.2 vs -2.7 ± 5.3, t[29] = 2.22, P = 0.034). No significant group differences were observed in other outcomes. Adverse events were more frequent in the ketamine group than in the placebo group, and no serious adverse events were reported. A higher baseline MADRS total score and body mass index were associated with a greater reduction in the MADRS total score. CONCLUSION: Intravenous ketamine outperformed placebo in Japanese patients with TRD who completed the study, suggesting that ketamine could alleviate depressive symptoms of TRD across diverse ethnic populations.
ABSTRACT
Antipsychotic drugs are the mainstay in the treatment of schizophrenia. However, one-third of patients do not show adequate improvement in positive symptoms with non-clozapine antipsychotics. Additionally, approximately half of them show poor response to clozapine, electroconvulsive therapy, or other augmentation strategies. However, the development of novel treatment for these conditions is difficult due to the complex and heterogenous pathophysiology of treatment-resistant schizophrenia (TRS). Therefore, this review provides key findings, potential treatments, and a roadmap for future research in this area. First, we review the neurobiological pathophysiology of TRS, particularly the dopaminergic, glutamatergic, and GABAergic pathways. Next, the limitations of existing and promising treatments are presented. Specifically, this article focuses on the therapeutic potential of neuromodulation, including electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Finally, we propose multivariate analyses that integrate various perspectives of the pathogenesis, such as dopaminergic dysfunction and excitatory/inhibitory imbalance, thereby elucidating the heterogeneity of TRS that could not be obtained by conventional statistics. These analyses can in turn lead to a precision medicine approach with closed-loop neuromodulation targeting the detected pathophysiology of TRS.
Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Transcranial Direct Current Stimulation , Antipsychotic Agents/therapeutic use , Clozapine/therapeutic use , Humans , Schizophrenia, Treatment-ResistantABSTRACT
BACKGROUND: The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS: A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS: One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS: Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Subject(s)
Schizophrenia , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy/methods , Schizophrenia/metabolism , gamma-Aminobutyric Acid/metabolismABSTRACT
INTRODUCTION: No study has investigated the impact of smoking habits and concomitant valproic acid (VPA) use on clinical outcomes in maintenance treatment with clozapine. Thus, we aimed to examine the effect of smoking habits and concomitant VPA use on relapse during the first year after discharge in patients with treatment-resistant schizophrenia (TRS) receiving clozapine. METHODS: This retrospective cohort study included patients with TRS who were initiated on clozapine during hospitalization and discharged between April 2012 and January 2021 in two tertiary psychiatric hospitals in Japan. Relapse was defined as rehospitalization due to psychiatric exacerbation during the first year after discharge. A multivariable Cox proportional hazards regression analysis was performed to analyze the effect of smoking habits and concomitant VPA use on relapse. Subgroup analyses were also conducted to examine potential interactions between smoking habits and concomitant VPA use. RESULTS: Among the included 192 patients, 69 (35.9%) met the criteria of relapse. While smoking habits (adjusted hazard ratio [aHR], 2.27; 95% confidence interval [CI], 1.28-4.01; p < 0.01) independently increased the risk of relapse, a significant interaction for relapse risk was found between smoking habits and concomitant VPA use (p-interaction = 0.015). Concomitant VPA use may be an effective modifier of the increased relapse risk associated with smoking habits. Among patients who smoked, those using VPA concomitantly exhibited a higher risk of relapse (aHR, 5.32; 95% CI, 1.68-16.9; p < 0.01) than those not using VPA (aHR, 1.41; 95% CI, 0.73-2.70; p = 0.30). CONCLUSION: The findings suggest that the combination of smoking habits and concomitant VPA use may increase the risk of relapse after discharge. Future studies are required to elucidate the mechanisms underlying these findings, such as a decrease in clozapine blood levels.
Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Humans , Clozapine/therapeutic use , Valproic Acid/therapeutic use , Schizophrenia/drug therapy , Smoking/epidemiology , Retrospective Studies , Schizophrenia, Treatment-Resistant , Habits , Antipsychotic Agents/therapeutic useABSTRACT
AIM: Validating the vulnerabilities and pathologies underlying treatment-resistant schizophrenia (TRS) is an important challenge in optimizing treatment. Gyrification and surface area (SA), reflecting neurodevelopmental features, have been linked to genetic vulnerability to schizophrenia. The aim of this study was to identify gyrification and SA abnormalities specific to TRS. METHODS: We analyzed 3T magnetic resonance imaging findings of 24 healthy controls (HCs), 20 responders to first-line antipsychotics (FL-Resp), and 41 patients with TRS, including 19 clozapine responders (CLZ-Resp) and 22 FL- and clozapine-resistant patients (patients with ultratreatment-resistant schizophrenia [URS]). The local gyrification index (LGI) and associated SA were analyzed across groups. Diagnostic accuracy was verified by receiver operating characteristic curve analysis. RESULTS: Both CLZ-Resp and URS had lower LGI values than HCs (P = 0.041, Hedges g [gH ] = 0.75; P = 0.013, gH = 0.96) and FL-Resp (P = 0.007, gH = 1.00; P = 0.002, gH = 1.31) in the left medial parietal cortex (Lt-MPC). In addition, both CLZ-Resp and URS had lower SA in the Lt-MPC than FL-Resp (P < 0.001, gH = 1.22; P < 0.001, gH = 1.75). LGI and SA were positively correlated in non-TRS (FL-Resp) (ρ = 0.64, P = 0.008) and TRS (CLZ-Resp + URS) (ρ = 0.60, P < 0.001). The areas under the receiver operating characteristic curve for non-TRS versus TRS with LGI and SA in the Lt-MPC were 0.79 and 0.85, respectively. SA in the Lt-MPC was inversely correlated with negative symptoms (ρ = -0.40, P = 0.018) and clozapine plasma levels (ρ = -0.35, P = 0.042) in TRS. CONCLUSION: LGI and SA in the Lt-MPC, a functional hub in the default-mode network, were abnormally reduced in TRS compared with non-TRS. Thus, altered LGI and SA in the Lt-MPC might be structural features associated with genetic vulnerability to TRS.
Subject(s)
Clozapine , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/pathology , Clozapine/pharmacology , Clozapine/therapeutic use , Parietal Lobe , Magnetic Resonance Imaging , Schizophrenia, Treatment-Resistant , Cerebral CortexABSTRACT
BACKGROUND: Abnormalities in the anterior cingulate cortex (ACC) are thought to play an important role in the pathophysiology of schizophrenia. Given regional variations in ACC structure, the present study aimed to examine ACC structural subdivisions and their relationships to treatment resistance and glutamatergic levels in schizophrenia. METHODS: This study included 100 patients with schizophrenia and 52 healthy controls from 2 cohorts. We applied non-negative matrix factorization to identify accurate and stable spatial components of ACC structure. Between groups, we compared ACC structural indices in each spatial component based on treatment resistance or response and tested relationships with ACC glutamate + glutamine levels. RESULTS: We detected reductions in cortical thickness and increases in mean diffusivity in the spatial components on the surface of the cingulate sulcus, especially in patients with treatment-resistant and clozapine-resistant schizophrenia. Notably, mean diffusivity in these components was higher in patients who did not respond to clozapine compared to those who did. Furthermore, these ACC structural alterations were related to elevated ACC glutamate + glutamine levels but not related to symptomatology or antipsychotic dose. LIMITATIONS: Sample sizes, cross-sectional findings and mixed antipsychotic status were limitations of this study. CONCLUSION: This study identified reproducible abnormalities in ACC structures in patients with treatment-resistant and clozapine-resistant schizophrenia. Given that these spatial components play a role in inhibitory control, the present study strengthens the notion that glutamate-related disinhibition is a common biological feature of treatment resistance in schizophrenia.
Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Clozapine/pharmacology , Clozapine/therapeutic use , Cross-Sectional Studies , Glutamic Acid , Glutamine , Gyrus Cinguli/diagnostic imaging , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapyABSTRACT
BACKGROUND: The efficacy of repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (dlPFC) has been established in patients with treatment-resistant depression (TRD), suggesting that alterations in signal propagation from the left dlPFC to other brain regions may be linked to the pathophysiology of TRD. Alterations at the cellular level, including dysfunction of oligodendrocytes, may contribute to these network abnormalities. The objectives of the present study were to compare signal propagation from the left dlPFC to other neural networks in patients with TRD and healthy controls. We used TMS combined with electroencephalography to explore links between cell-specific gene expression and signal propagation in TRD using a virtual-histology approach. METHODS: We examined source-level estimated signal propagation from the left dlPFC to the 7 neural networks in 60 patients with TRD and 30 healthy controls. We also calculated correlations between the interregional profiles of altered signal propagation and gene expression for 9 neural cell types derived from the Allen Human Brain Atlas data set. RESULTS: Signal propagation from the left dlPFC to the salience network was reduced in the θ and α bands in patients with TRD (p = 0.0055). Furthermore, this decreased signal propagation was correlated with cellspecific gene expression of oligodendrocytes (p < 0.000001). LIMITATIONS: These results show only part of the pathophysiology of TRD, because stimulation was limited to the left dlPFC. CONCLUSION: Reduced signal propagation from the left dlPFC to the salience network may represent a pathophysiological endophenotype of TRD; this finding may be associated with reduced expression of oligodendrocytes.
Subject(s)
Depressive Disorder, Treatment-Resistant , Transcranial Magnetic Stimulation , Depression , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/metabolism , Depressive Disorder, Treatment-Resistant/therapy , Humans , Oligodendroglia/metabolism , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Transcranial Magnetic Stimulation/methodsABSTRACT
AIMS: Develop a robust and user-friendly software tool for the prediction of dopamine D2 receptor occupancy (RO) in patients with schizophrenia treated with either olanzapine or risperidone, in order to facilitate clinician exploration of the impact of treatment strategies on RO using sparse plasma concentration measurements. METHODS: Previously developed population pharmacokinetic models for olanzapine and risperidone were combined with a pharmacodynamic model for D2 RO and implemented in the R programming language. Maximum a posteriori Bayesian estimation was used to provide predictions of plasma concentration and RO based on sparse concentration sampling. These predictions were then compared to observed plasma concentration and RO. RESULTS: The average (standard deviation) response times of the tools, defined as the time required for the application to predict parameter values and display the output, were 2.8 (3.1) and 5.3 (4.3) seconds for olanzapine and risperidone, respectively. The mean error (95% confidence interval) and root mean squared error (95% confidence interval) of predicted vs. observed concentrations were 3.73 ng/mL (-2.42-9.87) and 10.816 ng/mL (6.71-14.93) for olanzapine, and 0.46 ng/mL (-4.56-5.47) and 6.68 ng/mL (3.57-9.78) for risperidone and its active metabolite (9-OH risperidone). Mean error and root mean squared error of RO were -1.47% (-4.65-1.69) and 5.80% (3.89-7.72) for olanzapine and -0.91% (-7.68-5.85) and 8.87% (4.56-13.17) for risperidone. CONCLUSION: Our monitoring software predicts concentration-time profiles and the corresponding D2 RO from sparsely sampled concentration measurements in an accessible and accurate form.
Subject(s)
Antipsychotic Agents , Antipsychotic Agents/therapeutic use , Bayes Theorem , Benzodiazepines , Humans , Olanzapine , Receptors, Dopamine D2/metabolism , Risperidone/therapeutic useABSTRACT
BACKGROUND: The public health measures enacted in order to control the coronavirus disease (COVID-19) pandemic have caused considerable changes to daily life. For autistic children and adolescents, adapting to the "new normal," including mask-wearing, may be difficult because of their restricted interest and repetitive behavior (RRB) characteristics. We aimed to examine the relationships between RRB characteristics and the impact of mask-wearing on their social communications during the pandemic. METHODS: We recruited participants with a clinical diagnosis of autism spectrum disorder based on DSM-5 diagnostic criteria from two outpatient clinics in Tokyo, Japan, between November 2020 and April 2021 using a convenience sampling methodology. As a result, the participants consisted of 102 children and adolescents (mean (SD) age = 11.6 (5.3)). We collected data on RRB characteristics frequency before and during the pandemic using the CoRonavIruS Health Impact Survey (CRISIS) - Adapted for Autism and Related Neurodevelopmental conditions (AFAR). We then conducted factor analyses to compute the RRB severity composite scores, which are divided into lower- (e.g., sensory seeking), and higher-order (e.g., restricted interest). We also investigated mask-wearing culture using a bespoke questionnaire, and using Spearman's rank correlation analyses, we examined the relationships between before pandemic RRB characteristics, and the impact of mask-wearing on social communications during the pandemic. RESULTS: We found that children and adolescents who exhibited lower-order RRB before the pandemic had difficulties in going-out with mask-wearing (rho = -0.25, q = .031), more challenges with mask-wearing (rho = - 0.34, q = .0018), and difficulty in referring to others' emotions while wearing masks (rho = - 0.36, q = .0016). We also found an association between higher-order RRB before the pandemic and an uncomfortable sensation (rho = - 0.42, q = .0002) and difficulties in referring to other's emotions while wearing masks (rho = - 0.25, q = .031). CONCLUSIONS: We revealed that various behaviors, such as sensory seeking, repetitive motor mannerisms and movements, and rituals and routines, undertaken before the pandemic could be important predictors of difficulties with mask-wearing and social communication for autistic children and adolescents during the pandemic. Caregivers and teachers wearing masks may need to provide extra support for social communication to autistic children and adolescents showing RRB characteristics frequently.
Subject(s)
Autism Spectrum Disorder , Autistic Disorder , COVID-19 , Adolescent , Autism Spectrum Disorder/psychology , Autistic Disorder/psychology , COVID-19/epidemiology , Child , Humans , Pandemics , Social Cognition , Surveys and QuestionnairesABSTRACT
BACKGROUND: Gamma-Aminobutyric Acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABAergic dysfunction has been implicated in the pathophysiology of schizophrenia. Clozapine, the only approved drug for treatment-resistant schizophrenia (TRS), involves the GABAergic system as one of its targets. However, no studies have investigated the relationship between brain GABA levels, as measured by proton magnetic resonance spectroscopy (1 H-MRS), and clozapine response in patients with TRS. METHODS: This study enrolled patients with TRS who did not respond to clozapine (ultra-resistant schizophrenia: URS) and who responded to clozapine (non-URS), patients with schizophrenia who responded to first-line antipsychotics (first-line responders: FLR), and healthy controls (HCs). We measured GABA levels in the midcingulate cortex (MCC) using 3T 1 H-MRS and compared these levels among the groups. The associations between GABA levels and symptom severity were also explored within the patient groups. RESULTS: A total of 98 participants (URS: n = 22; non-URS: n = 25; FLR: n = 16; HCs: n = 35) completed the study. We found overall group differences in MCC GABA levels (F(3,86) = 3.25, P = 0.04). Specifically, patients with URS showed higher GABA levels compared to those with non-URS (F(1,52) = 8.40, P = 0.03, Cohen's d = 0.84). MCC GABA levels showed no associations with any of the symptom severity scores within each group or the entire patient group. CONCLUSION: Our study is the first to report elevated GABA levels in the MCC in patients with schizophrenia resistant to clozapine treatment compared with those responsive to clozapine. Longitudinal studies are required to evaluate if GABA levels are a suitable biomarker to predict clozapine resistance.
Subject(s)
Clozapine , Schizophrenia , Humans , Clozapine/pharmacology , Clozapine/therapeutic use , Proton Magnetic Resonance Spectroscopy/methods , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia, Treatment-Resistant , gamma-Aminobutyric AcidABSTRACT
Major depressive disorder (MDD) is a mental illness with high socio-economic burden, but its pathophysiology has not been fully elucidated. Recently, the cortical excitatory and inhibitory imbalance hypothesis and neuroplasticity hypothesis have been proposed for MDD. Although several studies have examined the neurophysiological profiles in MDD using transcranial magnetic stimulation (TMS), a meta-analysis of TMS neurophysiology has not been performed. The objective of this study was to compare TMS-electromyogram (TMS-EMG) findings between patients with MDD and healthy controls (HCs). To this end, we examined whether patients with MDD have lower short-interval cortical inhibition (SICI) which reflects gamma-aminobutyric acid (GABA)A receptor-mediated activity, lower cortical silent period (CSP) which represents GABAB receptor-mediated activity, higher intracortical facilitation (ICF) which reflects glutamate N-methyl-D-aspartate receptor-mediated activity, and the lower result of paired associative stimulation (PAS) paradigm which shows the level of neuroplasticity in comparison with HC. Further, we explored the effect of clinical and demographic factors that may influence TMS neurophysiological indices. We first searched and identified research articles that conducted single- or paired-pulse TMS-EMG on patients with MDD and HC. Subsequently, we extracted the data from the included studies and meta-analyzed the data with the comprehensive meta-analysis software. Patients with MDD were associated with lower SICI, lower CSP, potentially higher ICF, and lower PAS compared with HC. Our results confirmed the proposed hypotheses, suggesting the usefulness of TMS neurophysiology as potential diagnostic markers of MDD.
Subject(s)
Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/therapy , Transcranial Magnetic Stimulation/methods , Humans , NeurophysiologyABSTRACT
The radiotracers [11 C]-raclopride and [11 C]-(+)-PHNO are commonly used to measure differences in amphetamine-induced dopamine release between healthy persons and persons with neuropsychiatric diseases. As an agonist radiotracer, [11 C]-(+)-PHNO should theoretically be roughly 2.7 times more sensitive to displacement by endogenous dopamine than [11 C]raclopride. To date, only one study has been published comparing the sensitivity of these two radiotracers to amphetamine-induced dopamine release in healthy persons. Unfortunately, conflicting findings in the literature suggests that the dose of amphetamine they employed (0.3 mg/kg, p.o.) may not reliably reduce [11 C]-raclopride binding in the caudate. Thus, it is unclear whether the preponderance of evidence supports the theory that [11 C]-(+)-PHNO is more sensitive to displacement by amphetamine in humans than [11 C]-raclopride. In order to clarify these issues, we conducted a comparative meta-analysis summarizing the effects of amphetamine on [11 C]-raclopride and [11 C]-(+)-PHNO binding in healthy humans. Our analysis indicates that amphetamine given at 0.3 mg/kg, p.o. does not reliably reduce [11 C]-raclopride binding in the caudate. Second, the greater sensitivity of [11 C]-(+)-PHNO is evidenced at 0.5 mg/kg, p.o., but not at lower doses of amphetamine. Third, our analysis suggests that [11 C]-(+)-PHNO may be roughly 1.5 to 2.5 times more sensitive to displacement by amphetamine than [11 C]-raclopride in healthy persons. We recommend that future displacement studies with these radiotracers employ 0.5 mg/kg, p.o. of amphetamine with a dose, post-scan interval of at least 3 hr. Using this dose of amphetamine, [11 C]-raclopride studies should employ at least n = 34 participants per group, while [11 C]-(+)-PHNO studies should employ at least n = 6 participants per group, in order to be sufficiently powered (80%) to detect changes in radiotracer binding within the caudate.
Subject(s)
Amphetamine , Dopamine , Amphetamine/pharmacology , Dopamine/metabolism , Dopamine Agonists/pharmacology , Humans , Oxazines , Positron-Emission Tomography , Raclopride , Receptors, Dopamine D2/metabolismABSTRACT
Alterations in glutamatergic neurotransmission are implicated in the pathophysiology of depression, and the glutamatergic system represents a treatment target for depression. To summarize the nature of glutamatergic alterations in patients with depression, we conducted a meta-analysis of proton magnetic resonance (1H-MRS) spectroscopy studies examining levels of glutamate. We used the search terms: depress* AND (MRS OR "magnetic resonance spectroscopy"). The search was performed with MEDLINE, Embase, and PsycINFO. The inclusion criteria were 1H-MRS studies comparing levels of glutamate + glutamine (Glx), glutamate, or glutamine between patients with depression and healthy controls. Standardized mean differences (SMD) were calculated to assess group differences in the levels of glutamatergic neurometabolites. Forty-nine studies met the eligibility criteria, which included 1180 patients and 1066 healthy controls. There were significant decreases in Glx within the medial frontal cortex (SMD = -0.38; 95% CI, -0.69 to -0.07) in patients with depression compared with controls. Subanalyses revealed that there was a significant decrease in Glx in the medial frontal cortex in medicated patients with depression (SMD = -0.50; 95% CI, -0.80 to -0.20), but not in unmedicated patients (SMD = -0.27; 95% CI, -0.76 to 0.21) compared with controls. Overall, decreased levels of glutamatergic metabolites in the medial frontal cortex are linked with the pathophysiology of depression. These findings are in line with the hypothesis that depression may be associated with abnormal glutamatergic neurotransmission.
Subject(s)
Glutamic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy/methods , Adolescent , Adult , Aged , Aspartic Acid/metabolism , Depression/diagnostic imaging , Depression/metabolism , Depression/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Female , Glutamic Acid/analysis , Glutamine/metabolism , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Synaptic TransmissionABSTRACT
Although clozapine is the main antipsychotic medication for treatment-resistant schizophrenia, 40-70% of patients on clozapine have persistent psychotic symptoms (i.e. ultra-treatment-resistant schizophrenia, UTRS). We aimed to examine clozapine response/non-response patterns in patients with treatment-resistant schizophrenia, as well as determine patient clinico-demographic factors associated with long-term clozapine non-response. Clinico-demographic characteristics of 241 patients on clozapine were collected through a retrospective chart review. The median (interquartile range, IQR) follow-up from illness onset was 25.0 (IQR = 24.0) years. Clozapine response was assessed at median 10.8 (IQR = 14.0) months (Time 1, T1) and 7.2 (IQR = 13.5) years (Time 2, T2) after its initiation. It was evaluated by chart reviewers based on the information provided in clinical notes. Binomial logistic regression was used to determine clinico-demographic factors associated with clozapine non-response at both T1 and T2 (i.e. stable UTRS, S-UTRS) compared to clozapine response at both times (i.e. stable clozapine responders, S-ClozResp). Among clozapine responders (n = 122) at T1, 83.6% remained clozapine responsive and 16.4% became non-responsive at T2. In the UTRS group (n = 119) at T1, 87.4% remained clozapine non-responsive and 12.6% became responsive at T2. Duration of delay in clozapine initiation (OR = 0.94, Wald χ2 = 5.33, p = 0.021) and number of pre-clozapine hospitalizations (OR = 0.95, Wald χ2 = 5.20, p = 0.023) were associated with S-UTRS. Most UTRS patients were non-responsive to clozapine from the start of treatment. Preventing delay in initiating clozapine and relapses could help promote long-term clozapine response in patients with treatment-resistant schizophrenia. Future longitudinal studies are required to explore the neuropathological correlates of relapses and delay in clozapine initiation.
Subject(s)
Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Outcome Assessment, Health Care/statistics & numerical data , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Adult , Age of Onset , Aged , Female , Humans , Male , Middle Aged , Ontario/epidemiology , Prognosis , Psychotic Disorders/epidemiology , Retrospective Studies , Schizophrenia/epidemiologyABSTRACT
AIM: Stress-related disorders and severe stress exposure can cause atrophy of the whole hippocampus and its subfields. However, the impact of stress coping strategies on the hippocampus remains unclear. Therefore, we aimed to examine the relation between approach- and avoidance-oriented coping strategies and hippocampal volume in elderly persons. METHODS: A total of 1045 elderly persons living in Arakawa-ward, Tokyo (mean ± SD age: 72.8 ± 5.2 years; 569 females [54.4%]) were included in the study and completed several questionnaires and face-to-face interviews and underwent magnetic resonance imaging. Approach- or avoidance-oriented coping strategies were assessed with the Stress and Coping Inventory, while cognitive function and depressive symptoms were assessed with the Mini-Mental State Examination and Geriatric Depression Scale, respectively. The volume of the whole hippocampus on T1-weighted images was delineated and calculated using FreeSurfer 6.0. Multiple regression analyses were performed to examine the relation between Stress and Coping Inventory scores and whole hippocampal volume. RESULTS: Approach-oriented coping strategy scores were positively correlated with whole hippocampal volume. Furthermore, these relations remained significant after controlling for the influence of cognitive function and depressive symptoms on these volumetric variables. In contrast, avoidance-oriented coping strategy scores were not correlated with whole hippocampal volume. CONCLUSION: This study demonstrated that hippocampal volume may be associated with the approach-oriented coping strategy; therefore, this strategy may preserve hippocampal volume in the elderly.