Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Interface Focus ; 13(6): 20230044, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106912

ABSTRACT

Persistent atrial fibrillation (AF) is not effectively treated due to a lack of adequate tools for identifying patient-specific AF substrates. Recent studies revealed that in 30-50% of patients, persistent AF is maintained by localized drivers not only in the left atrium (LA) but also in the right atrium (RA). The chamber-specific atrial wall thickness (AWT) features underlying AF remain elusive, though the important role of AWT in AF is widely acknowledged. We aimed to provide direct evidence of the existence of distinguished RA and LA AWT features underlying AF drivers by analysing functionally and structurally mapped human hearts ex vivo. Coronary-perfused intact human atria (n = 7, 47 ± 14 y.o.; two female) were mapped using panoramic near-infrared optical mapping during pacing-induced AF. Then the hearts were imaged at approximately 170 µm3 resolution by 9.4 T gadolinium-enhanced MRI. The heart was segmented, and 3D AWT throughout atrial chambers was estimated and analysed. Optical mapping identified six localized RA re-entrant drivers in four hearts and four LA drivers in three hearts. All RA AF drivers were anchored to the pectinate muscle junctions with the crista terminalis or atrial walls. The four LA AF drivers were in the posterior LA. RA (n = 4) with AF drivers were thicker with greater AWT variation than RA (n = 3) without drivers (5.4 ± 2.6 mm versus 5.0 ± 2.4 mm, T-test p < 0.05; F-test p < 0.05). Furthermore, AWT in RA driver regions was thicker and varied more than in RA non-driver regions (5.1 ± 2.5 mm versus 4.4 ± 2.2 mm, T-test p < 0.05; F-test p < 0.05). On the other hand, LA (n = 3) with drivers was thinner than the LA (n = 4) without drivers. In particular, LA driver regions were thinner than the rest of LA regions (3.4 ± 1.0 mm versus 4.2 ± 1.0 mm, T-test p < 0.05). This study demonstrates chamber-specific AWT features of AF drivers. In RA, driver regions are thicker and have more variable AWT than non-driver regions. By contrast, LA drivers are thinner than non-drivers. Robust evaluation of patient-specific AWT features should be considered for chamber-specific targeted ablation.

2.
Front Physiol ; 13: 880260, 2022.
Article in English | MEDLINE | ID: mdl-35574484

ABSTRACT

Point clouds are a widely used format for storing information in a memory-efficient and easily manipulatable representation. However, research in the application of point cloud mapping and subsequent organ reconstruction with deep learning, is limited. In particular, current methods for left atrium (LA) visualization using point clouds recorded from clinical mapping during cardiac ablation are proprietary and remain difficult to validate. Many clinics rely on additional imaging such as MRIs/CTs to improve the accuracy of LA mapping. In this study, for the first time, we proposed a novel deep learning framework for the automatic 3D surface reconstruction of the LA directly from point clouds acquired via widely used clinical mapping systems. The backbone of our framework consists of a 30-layer 3D fully convolutional neural network (CNN). The architecture contains skip connections that perform multi-resolution processing to maximize information extraction from the point clouds and ensure a high-resolution prediction by combining features at different receptive levels. We used large kernels with increased receptive fields to address the sparsity of the point clouds. Residual blocks and activation normalization were further implemented to improve the feature learning on sparse inputs. By utilizing a light-weight design with low-depth layers, our CNN took approximately 10 s per patient. Independent testing on two cross-modality clinical datasets showed excellent dice scores of 93% and surface-to-surface distances below 1 pixel. Overall, our study may provide a more efficient, cost-effective 3D LA reconstruction approach during ablation procedures, and potentially lead to improved treatment of cardiac diseases.

3.
Comput Biol Med ; 114: 103444, 2019 11.
Article in English | MEDLINE | ID: mdl-31542646

ABSTRACT

Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia. The atrial wall thickness (AWT) can potentially improve our understanding of the mechanism underlying atrial structure that drives AF and provides important clinical information. However, most existing studies for estimating AWT rely on ruler-based measurements performed on only a few selected locations in 2D or 3D using digital calipers. Only a few studies have developed automatic approaches to estimate the AWT in the left atrium, and there are currently no methods to robustly estimate the AWT of both atrial chambers. Therefore, we have developed a computational pipeline to automatically calculate the 3D AWT across bi-atrial chambers and extensively validated our pipeline on both ex vivo and in vivo human atria data. The atrial geometry was first obtained by segmenting the atrial wall from the MRIs using a novel machine learning approach. The epicardial and endocardial surfaces were then separated using a multi-planar convex hull approach to define boundary conditions, from which, a Laplace equation was solved numerically to automatically separate bi-atrial chambers. To robustly estimate the AWT in each atrial chamber, coupled partial differential equations by coupling the Laplace solution with two surface trajectory functions were formulated and solved. Our pipeline enabled the reconstruction and visualization of the 3D AWT for bi-atrial chambers with a relative error of 8% and outperformed existing algorithms by >7%. Our approach can potentially lead to improved clinical diagnosis, patient stratification, and clinical guidance during ablation treatment for patients with AF.


Subject(s)
Heart Atria/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Aged , Algorithms , Female , Heart Atria/anatomy & histology , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL