Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
FASEB J ; 38(10): e23689, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38785406

ABSTRACT

Neuroblastoma, a prevalent extracranial solid tumor in children, arises from undifferentiated nerve cells. While tumor vasculature, often characterized by increased permeability, influences metastasis and recurrence, the direct impact of blood-borne molecules on tumor progression remains unclear. In the present study, we focused on the effect of exposure to albumin, one of the most abundant proteins in the serum, on human neuroblastoma cells. Albumin exposure elevated oxidative stress and led to mitochondria dysfunction via the activation of TGFß and PI3K pathways, accompanied by an increase in the metastatic and invasive properties of neuroblastoma cells. Proteins relevant to the induction of autophagy were upregulated in response to prolonged albumin exposure. Additionally, pre-exposure to albumin before treatment resulted in increased resistance to paclitaxel. Two valeriana-type iridoid glycosides, patrisophoroside and patrinalloside, recently isolated from Nardostachys jatamansi significantly mitigated the effect of albumin on oxidative stress, cell invasiveness, and chemoresistance. These findings illuminate the potential role of blood-borne molecules, such as albumin, in the progression and metastasis of neuroblastoma, as well as the possible therapeutic implications of valeriana-type iridoid glycosides in anti-cancer treatment.


Subject(s)
Drug Resistance, Neoplasm , Iridoid Glycosides , Neuroblastoma , Paclitaxel , Humans , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Drug Resistance, Neoplasm/drug effects , Paclitaxel/pharmacology , Iridoid Glycosides/pharmacology , Cell Line, Tumor , Neoplasm Invasiveness , Oxidative Stress/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Valerian/chemistry , Serum Albumin/metabolism
2.
Nat Prod Rep ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717742

ABSTRACT

Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.

3.
J Nat Prod ; 86(11): 2585-2591, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37793019

ABSTRACT

The stereoselective total synthesis of dechlorotrichotoxin A, alongside the synthesis of a 1:1 10E/Z mixture of trichotoxin A, was successfully achieved, commencing from the natural monoterpenoid (-)-citronellal. Key steps in the synthesis involved introducing three alkenes and establishing a stereogenic secondary alcohol center. These transformations were accomplished through olefin cross-metathesis, Tebbe olefination, and enantioselective allylation using a chiral phosphoric acid. A comparison of the spectroscopic data between the synthetic dechlorotrichotoxin A and the reported spectra confirmed that the polyketide isolated from a Smenospongia species corresponds to trichotoxin A rather than dechlorotrichotoxin A.


Subject(s)
Polyketides , Porifera , Animals , Stereoisomerism , Alkenes/chemistry , Ethanol , Molecular Structure
4.
Molecules ; 27(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36364218

ABSTRACT

Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.


Subject(s)
Apiaceae , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Apiaceae/chemistry , Coumarins/pharmacology , Aldo-Keto Reductases
5.
Anal Chem ; 93(36): 12162-12169, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34473490

ABSTRACT

The goal of the qNMR Summit is to take stock of the status quo and the recent developments in qNMR research and applications in a timely and accurate manner. It provides a platform for both advanced and novice qNMR practitioners to receive a well-rounded update and discuss potential qNMR-related applications and collaborations. For over a decade, scientists from academia, industry, nonprofit institutions, and governmental bodies have focused on the standardization of qNMR methodology, as well as its metrological and pharmacopeial utility. This paper reviews key content of qNMR Summits 1.0 to 4.0 and puts into perspective the outcomes and available transcripts of the October 2019 Summit 5.0, with attendees from the United States, Canada, Japan, Korea, and several European countries. Summit presentations focused on qNMR methodology in the pharmaceutical industry, advanced quantitation algorithms, and promising developments.


Subject(s)
Technology , Canada , Japan , Reference Standards , United States
6.
Bioorg Chem ; 106: 104493, 2021 01.
Article in English | MEDLINE | ID: mdl-33268010

ABSTRACT

Suntamide A (1), a new cyclic peptide, was isolated from Cicadidae Periostracum. The gross structure of 1 was elucidated by detailed analysis of HRMS and 1D/2D NMR spectra, and the absolute configuration was established by C3 Marfey's method. We extended our study to examine biological activity of 1, and found that 1 protected SH-SY5Y cells against rotenone-induced neurotoxicity. This effect of 1 seemed to be attributed to antioxidant induction and protection of mitochondria from rotenone-caused injury. Along with augmentation of the antioxidant system by 1, there was an evident activation of Nrf2, a transcription factor involved in the activation of the antioxidant system. These results indicate that 1 rescued the cells from rotenone-mediated neurotoxicity by enhancing antioxidant capacity via induction of Nrf2, suggesting that the compound could be used as a therapeutic intervention in neurodegenerative diseases such as Parkinson's disease.


Subject(s)
Antioxidants/pharmacology , Hemiptera/chemistry , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Peptides, Cyclic/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Rotenone/antagonists & inhibitors , Rotenone/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Mar Drugs ; 19(4)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920324

ABSTRACT

Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.


Subject(s)
Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Poaceae/metabolism , Uterus/drug effects , Animals , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/metabolism , Female , Humans , Ligands , MCF-7 Cells , Molecular Structure , Organ Size , Phytoestrogens/isolation & purification , Phytoestrogens/toxicity , Plant Components, Aerial/metabolism , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plant Roots/metabolism , Poaceae/growth & development , Rats, Sprague-Dawley , Structure-Activity Relationship , Uterus/growth & development , Uterus/metabolism
8.
Mar Drugs ; 19(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34436304

ABSTRACT

The epithelial-mesenchymal transition (EMT) of cancer cells is a crucial process in cancer cell metastasis. An Aquimarina sp. MC085 extract was found to inhibit A549 human lung cancer cell invasion, and caprolactin C (1), a new natural product, α-amino-ε-caprolactam linked to 3-methyl butanoic acid, was purified through bioactivity-guided isolation of the extract. Furthermore, its enantiomeric compound, ent-caprolactin C (2), was synthesized. Both 1 and 2 inhibited the invasion and γ-irradiation-induced migration of A549 cells. In transforming growth factor-ß (TGF-ß)-treated A549 cells, 2 inhibited the phosphorylation of Smad2/3 and suppressed the EMT cell marker proteins (N-cadherin, ß-catenin, and vimentin), as well as the related messenger ribonucleic acid expression (N-cadherin, matrix metalloproteinase-9, Snail, and vimentin), while compound 1 did not suppress Smad2/3 phosphorylation and the expression of EMT cell markers. Therefore, compound 2 could be a potential candidate for antimetastatic agent development, because it suppresses TGF-ß-induced EMT.


Subject(s)
Antineoplastic Agents/pharmacology , Caproates/pharmacology , Flavobacteriaceae/chemistry , Lactones/pharmacology , A549 Cells , Animals , Aquatic Organisms , Cell Line, Tumor/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans , Transforming Growth Factor beta/metabolism
9.
Phytochem Anal ; 32(6): 1067-1073, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33786911

ABSTRACT

INTRODUCTION: Quantitative nuclear magnetic resonance (qNMR) is one of the effective and reliable quantification tools for natural product research. Myelochroa leucotyliza belongs to the genus Myelochroa, a common foliose lichen genus found in the Korean Peninsula, and has not been quantitatively analysed using NMR. Previous chemical studies on M. leucotyliza have been limited to the main components by traditional thin-layer chromatography (TLC) experiments. OBJECTIVE: We explored the stability of atranorin, a major component of M. leucotyliza, in methanol and acetone using NMR and characterised the changes in the chemical profiles of the lichen extracts in methanol and acetone using qNMR. METHODOLOGY: Atranorin transformation in the presence of methanol was analysed using time-dependent proton (1 H)-NMR analysis (600 MHz NMR spectrometer). A 1 H qNMR (qHNMR) method was established using dimethyl sulfone as the internal standard for quantifying the selected components isolated from M. leucotyliza. Homogenous mixtures of the samples were dissolved in deuterated chloroform. RESULTS: Time-dependent 1 H-NMR experiments revealed that atranorin (5) from lichen M. leucotyliza decomposed into atraric acid (1) and methyl haemmatommate (2) in methanol. Four components were identified from M. leucotyliza: 1, 2, usnic acid (4), and 5, and their respective contents were determined using qHNMR. The percentages (w/w) of 1, 2, and 4 in the methanol extract were calculated as 5.66%, 0.69%, and 0.90%, while those of 1, 4, and 5 in the acetone extract were 1.70%, 1.68%, and 19.11%, respectively. CONCLUSION: We used qHNMR to effectively analyse quantitative compositional variations in two different M. leucotyliza extracts and reliably determined the chemical conversion of the unstable compound atranorin.


Subject(s)
Lichens , Chromatography, Thin Layer , Hydroxybenzoates , Parmeliaceae , Solvents
10.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203232

ABSTRACT

Colorectal cancer is one of the life-threatening ailments causing high mortality and morbidity worldwide. Despite the innovation in medical genetics, the prognosis for metastatic colorectal cancer in patients remains unsatisfactory. Recently, lichens have attracted the attention of researchers in the search for targets to fight against cancer. Lichens are considered mines of thousands of metabolites. Researchers have reported that lichen-derived metabolites demonstrated biological effects, such as anticancer, antiviral, anti-inflammatory, antibacterial, analgesic, antipyretic, antiproliferative, and cytotoxic, on various cell lines. However, the exploration of the biological activities of lichens' metabolites is limited. Thus, the main objective of our study was to evaluate the anticancer effect of secondary metabolites isolated from lichen (Usnea barbata 2017-KL-10) on the human colorectal cancer cell line HCT116. In this study, 2OCAA exhibited concentration-dependent anticancer activities by suppressing antiapoptotic genes, such as MCL-1, and inducing apoptotic genes, such as BAX, TP53, and CDKN1A(p21). Moreover, 2OCAA inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that 2OCAA is a better therapeutic candidate for colorectal cancer.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Triterpenes , Usnea/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/metabolism , HCT116 Cells , Humans , Triterpenes/chemistry , Triterpenes/pharmacology
11.
Molecules ; 26(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801065

ABSTRACT

Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-hydroperoxy eudesma-3,11-diene-2-one (1) and 7ß-hydroperoxy eudesma-3,11-diene-2-one (2), and a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated from the MeOH extract of dried fruits of A. oxyphylla along with eleven known sesquiterpenes (4-14). The structures were elucidated by the analysis of 1D/2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and optical rotation data. Compounds (1-3, 5-14) were evaluated for their protective effects against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in adipose-derived mesenchymal stem cells (ADMSCs). As a result, treatment with isolated compounds, especially compounds 11 and 12, effectively reverted the damage of tBHP on ADMSCs in a dose-dependent manner. In particular, 11 and 12 at 50 µM improved the viability of tBHP-toxified ADMSCs by 1.69 ± 0.05-fold and 1.61 ± 0.03-fold, respectively.


Subject(s)
Adipose Tissue/metabolism , Mesenchymal Stem Cells/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes, Eudesmane , Adipose Tissue/cytology , Alpinia , Animals , Male , Mesenchymal Stem Cells/cytology , Mice , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Sesquiterpenes, Eudesmane/chemistry , Sesquiterpenes, Eudesmane/pharmacology
12.
Molecules ; 26(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946633

ABSTRACT

Lentil (Lens culinaris; Fabaceae), one of the major pulse crops in the world, is an important source of proteins, prebiotics, lipids, and essential minerals as well as functional components such as flavonoids, polyphenols, and phenolic acids. To improve crop nutritional and medicinal traits, hybridization and mutation are widely used in plant breeding research. In this study, mutant lentil populations were generated by γ-irradiation for the development of new cultivars by inducing genetic diversity. Molecular networking via Global Natural Product Social Molecular Networking web platform and dipeptidyl peptide-IV inhibitor screening assay were utilized as tools for structure-based discovery of active components in active mutant lines selected among the lentil population. The bioactivity-based molecular networking analysis resulted in the annotation of the molecular class of phosphatidylcholine (PC) from the most active mutant line. Among PCs, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (18:0 Lyso PC) was selected for further in vivo study of anti-obesity effect in a high-fat diet (HFD)-induced obese mouse model. The administration of 18:0 Lyso PC not only prevented body weight gain and decreased relative gonadal adipose tissue weight, but also attenuated the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and leptin in the sera of HFD-induced obese mice. Additionally, 18:0 Lyso PC treatment inhibited the increase of adipocyte area and crown-like structures in adipose tissue. Therefore, these results suggest that 18:0 Lyso PC is a potential compound to have protective effects against obesity, improving obese phenotype induced by HFD.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Anti-Obesity Agents , Cholesterol, LDL/blood , Diet, High-Fat/adverse effects , Lens Plant , Obesity , Phosphatidylcholines , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Lens Plant/chemistry , Lens Plant/genetics , Male , Mice , Obesity/blood , Obesity/chemically induced , Obesity/drug therapy , Phosphatidylcholines/chemistry , Phosphatidylcholines/genetics , Phosphatidylcholines/pharmacology
13.
J Org Chem ; 85(13): 8462-8479, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32551610

ABSTRACT

Guided by dentin biomechanical bioactivity, this phytochemical study led to the elucidation of an extended set of structurally demanding proanthocyanidins (PACs). Unambiguous structure determination involved detailed spectroscopic and chemical characterization of four A-type dimers (2 and 4-6), seven trimers (10-16), and six tetramers (17-22). New outcomes confirm the feasibility of determining the absolute configuration of the catechol monomers in oligomeric PACs by one-dimensional (1D) and two-dimensional (2D) NMR. Electronic circular dichroism as well as phloroglucinolysis followed by mass spectrometry and chiral phase high-performance liquid chromatography (HPLC) analysis generated the necessary chiral reference data. In the context of previously reported dentin-bioactive PACs, accurately and precisely assigned 13C NMR resonances enabled absolute stereochemical assignments of PAC monomers via (i) inclusion of the 13C NMR γ-gauche effect and (ii) determination of differential 13C chemical shift values (ΔδC) in comparison with those of the terminal monomer (unit II) in the dimers 2 and 4-6. Among the 13 fully elucidated PACs, eight were identified as new, and one structure (11) was revised based on new knowledge gained regarding the subtle, stereospecific spectroscopic properties of PACs.


Subject(s)
Pinus , Proanthocyanidins , Chromatography, High Pressure Liquid , Dentin , Mass Spectrometry
14.
J Nat Prod ; 83(11): 3287-3297, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33151073

ABSTRACT

The present study elucidated the structures of three A-type tri- and tetrameric proanthocyanidins (PACs) isolated from Cinnamomum verum bark to the level of absolute configuration and determined their dental bioactivity using two therapeutically relevant bioassays. After selecting a PAC oligomer fraction via a biologically diverse bioassay-guided process, in tandem with centrifugal partition chromatography, phytochemical studies led to the isolation of PAC oligomers that represent the main bioactive principles of C. verum: two A-type tetrameric PACs, epicatechin-(2ß→O→7,4ß→8)-epicatechin-(4ß→6)-epicatechin-(2ß→O→7,4ß→8)-catechin (1) and parameritannin A1 (2), together with a trimer, cinnamtannin B1 (3). Structure determination of the underivatized proanthocyanidins utilized a combination of HRESIMS, ECD, 1D/2D NMR, and 1H iterative full spin analysis data and led to NMR-based evidence for the deduction of absolute configuration in constituent catechin and epicatechin monomeric units.


Subject(s)
Cinnamomum zeylanicum/chemistry , Dental Health Services , Plant Bark/chemistry , Polymers/chemistry , Proanthocyanidins/chemistry , Humans , Molecular Structure , Spectrum Analysis/methods
15.
Bioorg Chem ; 105: 104434, 2020 12.
Article in English | MEDLINE | ID: mdl-33161250

ABSTRACT

Natural products with antioxidant and anti-inflammatory properties are important sources of therapeutic agents. The nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is a well-known defense system against oxidative stress. In this study, a panel of extracts of plants, fungi, and bacteria were screened for Nrf2 activation in a cell-based assay and a crude extract of cultured marine Streptomyces sp. YP127 was found to activate Nrf2. Chemical investigation of the extracts led to isolation of a series of napyradiomycins that activate Nrf2. Among them, napyradiomycin, 16Z-19-hydroxynapyradiomycin A1 (1) exhibited the highest Nrf2-activating efficacy. Compound 1 was further confirmed to induce both mRNA and protein levels of Nrf2-dependent antioxidant enzyme genes in BV-2 microglial cells and suppress inflammatory mediators and intracellular reactive oxygen species. Our findings confirm the antioxidant and anti-inflammatory properties of compound 1, making it a promising therapeutic natural compound for various diseases associated with oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Streptomyces/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Naphthoquinones/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Bioorg Chem ; 99: 103869, 2020 06.
Article in English | MEDLINE | ID: mdl-32335358

ABSTRACT

Investigation of components of the chloroform-soluble and ethyl acetate-soluble extracts of the aerial parts of Chromolaena odorata L. selected by PCSK9 mRNA expression monitoring assay in HepG2 cells led to the isolation of a new stilbene dimer, (+)-8b-epi-ampelopsin A (1), and 30 known compounds (2-31). The structures of the isolates were established by interpretation of NMR spectroscopic data and the stereochemistry of the new stilbene (1) was proposed based on ECD and NMR calculations. Among the isolates, 1, 5,6,7,4'-tetramethoxyflavanone (6), 5,6,7,3',4'-pentamethoxyflavanone (7), acacetin (18), and uridine (21) were found to inhibit PCSK9 mRNA expression with IC50 values of 20.6, 21.4, 31.7, 15.0, and 13.7 µM, respectively. Furthermore, the most abundant isolate among the selected compounds, 6, suppressed PCSK9 and low-density lipoprotein receptor protein expression in addition to downregulating the mRNA expression of HNF-1α.


Subject(s)
Chromolaena/chemistry , Flavonoids/pharmacology , PCSK9 Inhibitors , Serine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Flavonoids/chemistry , Flavonoids/isolation & purification , Hep G2 Cells , Humans , Molecular Structure , Plant Components, Aerial/chemistry , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Bioorg Chem ; 102: 104095, 2020 09.
Article in English | MEDLINE | ID: mdl-32721777

ABSTRACT

Bioassay-guided fractionation of a 90% ethanol extract of Periostracum Cicadae led to the isolation of two new N-acetyldopamine dimers (1a/1b) along with six known dimers (2a/2b, 3a/3b, and 4a/4b) and two monomers (5a/5b); compounds 2a/2b, 4a/4b and 5a/5b were newly isolated from this material. All compounds were isolated as enantiomeric mixtures and each enantiomer was successfully separated by chiral-phase HPLC. The structures including absolute configurations were confirmed by high-resolution electrospray ionization mass spectrometry (HR-ESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopy, 1H iterative Full Spin Analysis (HiFSA), and electronic circular dichroism (ECD) spectroscopy. Subsequently, the bioactivities of these isolates were evaluated via CD4+ T cell differentiations, which are critical for immune responses and inflammation. The results revealed that compound 5b was observed to enhance the IFN-γ+ Th1 differentiation, which may have a potential for cancer immunotherapy.


Subject(s)
Dopamine/analogs & derivatives , Hemiptera/chemistry , Animals , Cell Differentiation/drug effects , Dopamine/chemistry , Dopamine/isolation & purification , Dopamine/pharmacology , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship , Th1 Cells , Th17 Cells
18.
Molecules ; 25(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093002

ABSTRACT

The filamentous fungal pathogen Fusarium sp. causes several crop diseases. Some Fusarium sp. are endophytes that produce diverse valuable bioactive secondary metabolites. Here, extensive chemical investigation of the endophytic fungus, Fusarium sp. QF001, isolated from the inner rotten part of old roots of Scutellariae baicalensis resulted in the isolation of two new photosensitive geometrical isomers of lucilactaene (compounds 2 and 3) along with lucilactaene (6) and six other known compounds (fusarubin (1), (+)-solaniol (4), javanicin (5), 9-desmethylherbarine (7), NG391 (8) and NG393 (9)). Newly isolated isomers and lucilactaene were unstable under light at room temperature and tended to be a mixture in equilibrium state when exposed to a polar protic solvent during reversed phase chromatography. Normal phase chromatography under dim light conditions with an aprotic mobile phase led to the successful isolation of the relatively unstable isomers 2 and 3. Their structures were elucidated as 8(Z)-lucilactaene (2) and 4(Z)-lucilactaene (3) based on spectroscopic data. The absolute configuration of 4 was speculated to be R by computer-assisted specific rotation analysis. The isolated compounds could inhibit NO production and suppress pro-inflammatory cytokines expression in LPS-stimulated macrophage cells. These properties of the isolated compounds indicate their potential use as anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Endophytes/chemistry , Furans , Fusarium/chemistry , Plant Roots/microbiology , Pyrroles , Scutellaria baicalensis/microbiology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Furans/chemistry , Furans/isolation & purification , Furans/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Mice , Pyrroles/chemistry , Pyrroles/isolation & purification , Pyrroles/pharmacology , RAW 264.7 Cells , Secondary Metabolism
19.
Molecules ; 25(19)2020 09 23.
Article in English | MEDLINE | ID: mdl-32977609

ABSTRACT

A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-ß-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-ß-glucopyranoside (11), which were found in Coreopsis species for the first time. The other known compounds, lanceoletin (2), 3,2'-dihydroxy-4-3'-dimethoxychalcone-4'-glucoside (3), 4-methoxylanceoletin (4), lanceolin (5), leptosidin (6), (2R)-8-methoxybutin (7), luteolin (8) and quercetin (9), were isolated in this study and reported previously from this plant. The structure of 1 was elucidated by analyzing one-dimensional and two-dimensional nuclear magnetic resonance and high resolution-electrospray ionization-mass spectrometry data. All compounds were tested for their dipeptidyl peptidase IV (DPP-IV) inhibitory activity and compounds 2-4, 6 and 7 inhibited DPP-IV activity in a concentration-dependent manner, with IC50 values from 9.6 to 64.9 µM. These results suggest that C. lanceolata flower and its active constituents show potential as therapeutic agents for diseases associated with type 2 diabetes mellitus.


Subject(s)
Coreopsis/chemistry , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Flowers/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Inhibitory Concentration 50
20.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30003207

ABSTRACT

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Subject(s)
Biological Products/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL