Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 592(7852): 93-98, 2021 04.
Article in English | MEDLINE | ID: mdl-33568816

ABSTRACT

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Subject(s)
Extremities , Homeodomain Proteins/genetics , Limb Deformities, Congenital/genetics , RNA, Long Noncoding/genetics , Sequence Deletion/genetics , Transcription, Genetic , Transcriptional Activation/genetics , Animals , Cell Line , Chromatin/genetics , Disease Models, Animal , Female , Humans , Mice , Mice, Transgenic
2.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36351433

ABSTRACT

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Subject(s)
Bone Diseases, Metabolic , Cutis Laxa , Animals , Humans , Mice , Collagen/genetics , Cutis Laxa/genetics , Elastin/metabolism , Extracellular Matrix Proteins/metabolism
3.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730490

ABSTRACT

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


Subject(s)
DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
4.
Clin Genet ; 105(6): 639-654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38374498

ABSTRACT

The application of genomic technologies has led to unraveling of the complex genetic landscape of disorders of epilepsy, gaining insights into their underlying disease mechanisms, aiding precision medicine, and providing informed genetic counseling. We herein present the phenotypic and genotypic insights from 142 Indian families with epilepsy with or without comorbidities. Based on the electroclinical findings, epilepsy syndrome diagnosis could be made in 44% (63/142) of the families adopting the latest proposal for the classification by the ILAE task force (2022). Of these, 95% (60/63) of the families exhibited syndromes with developmental epileptic encephalopathy or progressive neurological deterioration. A definitive molecular diagnosis was achieved in 74 of 142 (52%) families. Infantile-onset epilepsy was noted in 81% of these families (61/74). Fifty-five monogenic, four chromosomal, and one imprinting disorder were identified in 74 families. The genetic variants included 65 (96%) single-nucleotide variants/small insertion-deletions, 1 (2%) copy-number variant, and 1 (2%) triplet-repeat expansion in 53 epilepsy-associated genes causing monogenic disorders. Of these, 35 (52%) variants were novel. Therapeutic implications were noted in 51% of families (38/74) with definitive diagnosis. Forty-one out of 66 families with monogenic disorders exhibited autosomal recessive and inherited autosomal dominant disorders with high risk of recurrence.


Subject(s)
Epilepsy , Genetic Counseling , Phenotype , Humans , Epilepsy/genetics , Epilepsy/epidemiology , Epilepsy/diagnosis , India/epidemiology , Male , Female , Child , Child, Preschool , Infant , Genetic Predisposition to Disease , Pedigree , Age of Onset , Genetic Association Studies , Adolescent , Genotype , DNA Copy Number Variations/genetics
5.
Brain ; 146(12): 4880-4890, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37769650

ABSTRACT

Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies , Pain Insensitivity, Congenital , Humans , Pain Insensitivity, Congenital/genetics , Hereditary Sensory and Autonomic Neuropathies/genetics , Mutation/genetics
6.
J Med Genet ; 60(2): 204-211, 2023 02.
Article in English | MEDLINE | ID: mdl-35477554

ABSTRACT

BACKGROUND: Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC types 1 and 2) are rare spondyloepimetaphyseal dysplasias with identical radiological findings. The presence of intellectual disability in DMC and normal intellect in SMC differentiates the two. DMC and SMC1 are allelic and caused by homozygous or compound heterozygous variants in DYM. SMC2 is caused by variations in RAB33B. Both DYM and RAB33B are important in intravesicular transport and function in the Golgi apparatus. METHODS: Detailed clinical phenotyping and skeletal radiography followed by molecular testing were performed in all affected individuals. Next-generation sequencing and Sanger sequencing were used to confirm DYM and RAB33B variants. Sanger sequencing of familial variants was done in all parents. RESULTS: 24 affected individuals from seven centres are described. 18 had DMC and 6 had SMC2. Parental consanguinity was present in 15 of 19 (79%). Height <3 SD and gait abnormalities were seen in 20 and 14 individuals, respectively. The characteristic radiological findings of lacy iliac crests and double-humped vertebral bodies were seen in 96% and 88% of the affected. Radiological findings became attenuated with age. 23 individuals harboured biallelic variants in either DYM or RAB33B. Fourteen different variants were identified, out of which 10 were novel. The most frequently occurring variants in this group were c.719 C>A (3), c.1488_1489del (2), c.1484dup (2) and c.1563+2T>C (2) in DYM and c.400C>T (2) and c.186del (2) in RAB33B. The majority of these have not been reported previously. CONCLUSION: This large cohort from India contributes to the increasing knowledge of clinical and molecular findings in these rare 'Golgipathies'.


Subject(s)
Dwarfism , Intellectual Disability , Osteochondrodysplasias , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Mutation , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Dwarfism/diagnostic imaging , Dwarfism/genetics
7.
PLoS Genet ; 17(2): e1009339, 2021 02.
Article in English | MEDLINE | ID: mdl-33524049

ABSTRACT

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.


Subject(s)
Collagen Type I/genetics , HSP47 Heat-Shock Proteins/genetics , Mutation, Missense , Osteogenesis Imperfecta/genetics , Amino Acid Sequence , Cells, Cultured , Child, Preschool , Collagen Type I/metabolism , Fatal Outcome , Female , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/metabolism , Humans , Infant , Infant, Newborn , Models, Molecular , Osteogenesis Imperfecta/metabolism , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
8.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Article in English | MEDLINE | ID: mdl-33909043

ABSTRACT

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Subject(s)
Alanine-tRNA Ligase/genetics , Methionine-tRNA Ligase/genetics , Trichothiodystrophy Syndromes/genetics , Alanine-tRNA Ligase/metabolism , Child , Enzyme Stability/genetics , Female , Humans , Methionine-tRNA Ligase/metabolism , Trichothiodystrophy Syndromes/enzymology , Trichothiodystrophy Syndromes/pathology , Whole Genome Sequencing
9.
Hum Mutat ; 43(12): 1994-2009, 2022 12.
Article in English | MEDLINE | ID: mdl-36054293

ABSTRACT

The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue diseases. The autosomal recessive kyphoscoliotic EDS results from deficiency of either lysyl hydroxylase 1 (encoded by PLOD1), crucial for collagen cross-linking; or the peptidyl-prolyl cis-trans isomerase family FK506-binding protein 22 kDa (FKBP22 encoded by FKBP14), a molecular chaperone of types III, IV, VI, and X collagen. This study reports the clinical manifestations of three probands with homozygous pathogenic FKBP14 variants, including the previously reported c.362dupC; p.(Glu122Argfs*7) variant, a novel missense variant (c.587A>G; p.(Asp196Gly)) and a start codon variant (c.2T>G; p.?). Consistent clinical features in the hitherto reported individuals (n = 40) are kyphoscoliosis, generalized joint hypermobility and congenital muscle hypotonia. Severe vascular complications have been observed in 12.5%. A previously unreported feature is microcornea observed in two probands reported here. Both the c.587A>G and the c.362dupC variant cause complete loss of FKBP22. With immunocytochemistry on dermal fibroblasts, we provide the first evidence for intracellular retention of types III and VI collagen in EDS-FKBP14. Scratch wound assays were largely normal. Western blot of proteins involved in the unfolded protein response and autophagy did not reveal significant upregulation in dermal fibroblasts.


Subject(s)
Ehlers-Danlos Syndrome , Scoliosis , Humans , Ehlers-Danlos Syndrome/genetics , Peptidylprolyl Isomerase/genetics , Homozygote , Mutation, Missense
10.
Am J Hum Genet ; 104(3): 439-453, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30773278

ABSTRACT

SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based assays and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.


Subject(s)
Fibroblasts/pathology , Genes, Lethal , Mutation , NF-kappa B/genetics , Osteochondrodysplasias/pathology , Adolescent , Adult , Animals , Cells, Cultured , Child , Child, Preschool , DNA Damage , Dermis/metabolism , Dermis/pathology , Female , Fibroblasts/metabolism , Humans , Infant , Infant, Newborn , Mice , Mice, Inbred C57BL , Osteochondrodysplasias/genetics , Exome Sequencing/methods , Young Adult
11.
Am J Med Genet A ; 188(4): 1317-1322, 2022 04.
Article in English | MEDLINE | ID: mdl-34989134

ABSTRACT

Monosomy 1p36 is one of the common microdeletion syndromes with a recognizable facial phenotype. Failure to thrive, developmental delay, congenital heart disease, and other abnormalities are common in these patients. This is the first study on Asian Indian patients with monosomy 1p36, documenting the phenotypic characteristics of 13 patients, indicating phenotypic similarities in a diverse population and broadening the clinical spectrum.


Subject(s)
Chromosome Deletion , Monosomy , Chromosomes, Human, Pair 1/genetics , Cohort Studies , Humans , Monosomy/genetics , Phenotype
12.
Am J Med Genet A ; 188(3): 751-759, 2022 03.
Article in English | MEDLINE | ID: mdl-34750995

ABSTRACT

Pseudoachondroplasia (PSACH) is an autosomal dominant disorder characterized by rhizomelic short-limbed skeletal dysplasia. The primary clinical and radiographic features include disproportionate dwarfism, joint laxity and hyperextensibility, exaggerated lumbar lordosis, and late ossification of the epiphyses. Identification of disease-causing variants in heterozygous state in COMP establishes the molecular diagnosis of PSACH. We examined 11 families with clinical features suggestive of PSACH. In nine families, we used Sanger sequencing of exons 8-19 of COMP (NM_000095.2) and in two families exome sequencing was used for confirming the diagnosis. We identified 10 de novo variants, including five known variants (c.925G>A, c.976G>A, c.1201G>T, c.1417_1419del, and c.1511G>A) and five variants (c.874T>C, c.1201G>C, c.1309G>A, c.1416_1421delCGACAA, and c.1445A>T) which are not reported outside Indian ethnicity. We hereby report the largest series of individuals with molecular diagnosis of PSACH from India and reiterate the well-known genotype-phenotype corelation in PSACH.


Subject(s)
Achondroplasia , Achondroplasia/diagnosis , Achondroplasia/genetics , Cartilage Oligomeric Matrix Protein/genetics , Extracellular Matrix Proteins/genetics , Genotype , Humans , Matrilin Proteins/genetics , Mutation , Phenotype
13.
Brain ; 144(10): 3036-3049, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34037727

ABSTRACT

Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes are membrane-tethering heterotetramers located at the trans-Golgi network and recycling endosomes, respectively. GARP and EARP share the three subunits VPS51, VPS52 and VPS53, while VPS50 is unique to EARP and VPS54 to GARP. Retrograde transport of endosomal cargos to the trans-Golgi network is mediated by GARP and endocytic recycling by EARP. Here we report two unrelated individuals with homozygous variants in VPS50, a splice variant (c.1978-1G>T) and an in-frame deletion (p.Thr608del). Both patients had severe developmental delay, postnatal microcephaly, corpus callosum hypoplasia, seizures and irritability, transient neonatal cholestasis and failure to thrive. Light and transmission electron microscopy of liver from one revealed the absence of gamma-glutamyltransferase at bile canaliculi, with mislocalization to basolateral membranes and abnormal tight junctions. Using patient-derived fibroblasts, we identified reduced VPS50 protein accompanied by reduced levels of VPS52 and VPS53. While the transferrin receptor internalization rate was normal in cells of both patients, recycling of the receptor to the plasma membrane was significantly delayed. These data underscore the importance of VPS50 and/or the EARP complex in endocytic recycling and suggest an additional function in establishing cell polarity and trafficking between basolateral and apical membranes in hepatocytes. Individuals with biallelic hypomorphic variants in VPS50, VPS51 or VPS53 show an overarching neurodegenerative disorder with severe developmental delay, intellectual disability, microcephaly, early-onset epilepsy and variable atrophy of the cerebellum, cerebrum and/or brainstem. The term 'GARP/EARP deficiency' designates disorders in such individuals.


Subject(s)
Cholestasis/diagnosis , Cholestasis/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Alleles , Cells, Cultured , Child, Preschool , Cholestasis/complications , Humans , Infant , Infant, Newborn , Male , Neurodevelopmental Disorders/complications , Pedigree , Vesicular Transport Proteins/metabolism , trans-Golgi Network/physiology
14.
Hum Mutat ; 42(6): 711-730, 2021 06.
Article in English | MEDLINE | ID: mdl-33739556

ABSTRACT

Brittle cornea syndrome (BCS) is a rare autosomal recessive disorder characterized by corneal thinning and fragility, leading to corneal rupture, the main hallmark of this disorder. Non-ocular symptoms include not only hearing loss but also signs of connective tissue fragility, placing it in the Ehlers-Danlos syndrome (EDS) spectrum. It is caused by biallelic pathogenic variants in ZNF469 or PRDM5, which presumably encode transcription factors for extracellular matrix components. We report the clinical and molecular features of nine novel BCS families, four of which harbor variants in ZNF469 and five in PRDM5. We also performed a genotype- and phenotype-oriented literature overview of all (n = 85) reported patients with ZNF469 (n = 53) and PRDM5 (n = 32) variants. Musculoskeletal findings may be the main reason for referral and often raise suspicion of another heritable connective tissue disorder, such as kyphoscoliotic EDS, osteogenesis imperfecta, or Marfan syndrome, especially when a corneal rupture has not yet occurred. Our findings highlight the multisystemic nature of BCS and validate its inclusion in the EDS classification. Importantly, gene panels for heritable connective tissue disorders should include ZNF469 and PRDM5 to allow for timely diagnosis and appropriate preventive measures for this rare condition.


Subject(s)
DNA-Binding Proteins/genetics , Eye Abnormalities/genetics , Joint Instability/congenital , Skin Abnormalities/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Eye Abnormalities/epidemiology , Eye Abnormalities/pathology , Family , Female , Genetic Association Studies , Humans , Infant , Joint Instability/epidemiology , Joint Instability/genetics , Joint Instability/pathology , Male , Mutation , Pedigree , Skin Abnormalities/epidemiology , Skin Abnormalities/pathology , Exome Sequencing , Young Adult
15.
Hum Genet ; 140(6): 879-884, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33386993

ABSTRACT

DOORS syndrome is characterized by deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. In this study, we report two unrelated individuals with DOORS syndrome without deafness. Exome sequencing revealed a homozygous missense variant in PIGF (NM_173074.3:c.515C>G, p.Pro172Arg) in both. We demonstrate impaired glycosylphosphatidylinositol (GPI) biosynthesis through flow cytometry analysis. We thus describe the causal role of a novel disease gene, PIGF, in DOORS syndrome and highlight the overlap between this condition and GPI deficiency disorders. For each gene implicated in DOORS syndrome and/or inherited GPI deficiencies, there is considerable clinical variability so a high index of suspicion is warranted even though not all features are noted.


Subject(s)
Craniofacial Abnormalities/genetics , Glycosylphosphatidylinositols/deficiency , Hand Deformities, Congenital/genetics , Hearing Loss, Sensorineural/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Mutation, Missense , Nails, Malformed/genetics , Seizures/genetics , Adolescent , Amino Acid Sequence , Animals , Consanguinity , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Female , Gene Expression , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , HEK293 Cells , Hand Deformities, Congenital/metabolism , Hand Deformities, Congenital/pathology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Homozygote , Humans , Infant , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Membrane Proteins/deficiency , Nails, Malformed/metabolism , Nails, Malformed/pathology , Seizures/metabolism , Seizures/pathology , Sequence Alignment , Exome Sequencing
16.
Am J Hum Genet ; 103(6): 948-967, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30526868

ABSTRACT

Neurodevelopmental disorders (NDD) are genetically and phenotypically heterogeneous conditions due to defects in genes involved in development and function of the nervous system. Individuals with NDD, in addition to their primary neurodevelopmental phenotype, may also have accompanying syndromic features that can be very helpful diagnostically especially those with recognizable facial appearance. In this study, we describe ten similarly affected individuals from six unrelated families of different ethnic origins having bi-allelic truncating variants in TMEM94, which encodes for an uncharacterized transmembrane nuclear protein that is highly conserved across mammals. The affected individuals manifested with global developmental delay/intellectual disability, and dysmorphic facial features including triangular face, deep set eyes, broad nasal root and tip and anteverted nostrils, thick arched eye brows, hypertrichosis, pointed chin, and hypertelorism. Birthweight in the upper normal range was observed in most, and all but one had congenital heart defects (CHD). Gene expression analysis in available cells from affected individuals showed reduced expression of TMEM94. Global transcriptome profiling using microarray and RNA sequencing revealed several dysregulated genes essential for cell growth, proliferation and survival that are predicted to have an impact on cardiotoxicity hematological system and neurodevelopment. Loss of Tmem94 in mouse model generated by CRISPR/Cas9 was embryonic lethal and led to craniofacial and cardiac abnormalities and abnormal neuronal migration pattern, suggesting that this gene is important in craniofacial, cardiovascular, and nervous system development. Our study suggests the genetic etiology of a recognizable dysmorphic syndrome with NDD and CHD and highlights the role of TMEM94 in early development.


Subject(s)
Developmental Disabilities/genetics , Heart Defects, Congenital/genetics , Neurodevelopmental Disorders/genetics , Nuclear Proteins/genetics , Abnormalities, Multiple/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Facies , Female , Humans , Hypertelorism/genetics , Infant , Intellectual Disability/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nervous System Malformations/genetics , Phenotype , Transcriptome/genetics
17.
Clin Genet ; 100(5): 542-550, 2021 11.
Article in English | MEDLINE | ID: mdl-34302356

ABSTRACT

Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , White Matter/abnormalities , Alleles , Chromosome Aberrations , Consanguinity , Family , Genetic Association Studies/methods , Genetic Testing , Humans , India/epidemiology , Microarray Analysis , Mutation , Nervous System Malformations/epidemiology , Exome Sequencing
18.
Am J Med Genet A ; 185(2): 620-624, 2021 02.
Article in English | MEDLINE | ID: mdl-33179409

ABSTRACT

Cenani Lenz syndrome is a rare autosomal recessive disorder associated with variable degree of limb malformations, dysmorphism, and renal agenesis. It is caused due to pathogenic variants in the LRP4 gene, which plays an important role in limb and renal development. Mutations in the APC gene have also been occasionally associated with CLS. The phenotypic spectrum ranges from mild to very severe perinatal lethal type depending on the type of variant. We report a pathogenic variant, c.2710 del T (p.Trp904GlyfsTer5) in theLRP4 gene, in a fetus with lethal Cenani Lenz syndrome with antenatal presentation of tetraphocomelia and symmetrical involvement of hands and feet.


Subject(s)
Congenital Abnormalities/genetics , Kidney Diseases/congenital , Kidney/abnormalities , LDL-Receptor Related Proteins/genetics , Limb Deformities, Congenital/genetics , Syndactyly/genetics , Aborted Fetus/pathology , Adenomatous Polyposis Coli Protein/genetics , Congenital Abnormalities/mortality , Congenital Abnormalities/pathology , Female , Genes, Lethal/genetics , Genetic Predisposition to Disease , Homozygote , Humans , Indian Ocean Islands/epidemiology , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/mortality , Kidney Diseases/pathology , Limb Deformities, Congenital/mortality , Limb Deformities, Congenital/pathology , Male , Mutation/genetics , Pedigree , Phenotype , Pregnancy , Syndactyly/mortality , Syndactyly/pathology
19.
Am J Med Genet A ; 185(8): 2345-2355, 2021 08.
Article in English | MEDLINE | ID: mdl-33942996

ABSTRACT

Overgrowth, defined as height and/or OFC ≥ +2SD, characterizes a subset of patients with syndromic intellectual disability (ID). Many of the disorders with overgrowth and ID (OGID) are rare and the full phenotypic and genotypic spectra have not been unraveled. This study was undertaken to characterize the phenotypic and genotypic profile of patients with OGID. Patients with OGID were ascertained from the cohort of patients who underwent cytogenetic microarray (CMA) and/or exome sequencing (ES) at our center over a period of 6 years. Thirty-one subjects (six females) formed the study group with ages between 3.5 months and 13 years. CMA identified pathogenic deletions in two patients. In another 11 patients, a disease causing variant was detected by ES. The spectrum of disorders encompassed aberrations in genes involved in the two main pathways associated with OGID. These were genes involved in epigenetic regulation like NSD1, NFIX, FOXP1, and those in the PI3K-AKT pathway like PTEN, AKT3, TSC2, PPP2R5D. Five novel pathogenic variants were added by this study. NSD1-related Sotos syndrome was the most common disorder, seen in five patients. A causative variant was identified in 61.5% of patients who underwent only ES compared to the low yield of 11.1% in the CMA group. The molecular etiology could be confirmed in 13 subjects with OGID giving a diagnostic yield of 42%. The major burden was formed by autosomal dominant monogenic disorders. Hence, ES maybe a better first-tier genomic test rather than CMA in OGID.


Subject(s)
Genetic Association Studies , Genetic Heterogeneity , Genetic Predisposition to Disease , Gigantism/diagnosis , Gigantism/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 19 , Chromosomes, Human, Pair 3 , DNA Copy Number Variations , Facies , Female , Genetic Association Studies/methods , Genotype , Growth Charts , Humans , India , Infant , Magnetic Resonance Imaging , Male , Phenotype , Sequence Analysis, DNA , Exome Sequencing
20.
Hum Mutat ; 41(9): 1645-1661, 2020 09.
Article in English | MEDLINE | ID: mdl-32623794

ABSTRACT

The family of Tre2-Bub2-Cdc16 (TBC)-domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP-independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss-of-function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B-deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.


Subject(s)
GTPase-Activating Proteins/genetics , Gingival Overgrowth/genetics , Neurodevelopmental Disorders/genetics , Seizures/genetics , Adult , Child , Endocytosis , Female , HeLa Cells , Humans , Infant , Loss of Function Mutation , Male , Pedigree , Exome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL