Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 168(5): 878-889.e29, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235199

ABSTRACT

Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Animals , Antineoplastic Agents/chemistry , Calorimetry , Cell Line , Fibroblasts/metabolism , Heterografts , Humans , Mice , Neoplasm Transplantation , Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction , Small Molecule Libraries
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1407-1418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695168

ABSTRACT

BACKGROUND: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS: As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS: Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.


Subject(s)
Apolipoprotein A-II , Apolipoprotein A-I , Cholesterol, HDL , Cross-Over Studies , Phosphatidylcholine-Sterol O-Acyltransferase , Recombinant Proteins , Humans , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Male , Apolipoprotein A-I/blood , Middle Aged , Cholesterol, HDL/blood , Apolipoprotein A-II/blood , Female , Cholesterol Esters/blood , Cholesterol Esters/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/enzymology , Atherosclerosis/blood , Apolipoprotein B-100/blood , Aged , Adult , Lipoproteins/blood , Lipoproteins/metabolism
3.
J Lipid Res ; 65(2): 100498, 2024 02.
Article in English | MEDLINE | ID: mdl-38216055

ABSTRACT

Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimer's disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across ε2/ε3, ε3/ε3, and ε3/ε4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to ε2/ε3, ε3/ε4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The ε3/ε4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the ε3/ε3 hepatocytes. Only in the ε3/ε4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the ε4 allele.


Subject(s)
Apolipoproteins E , Lipidomics , Female , Humans , Alleles , Apolipoproteins E/genetics , Genotype , Hepatocytes
4.
Environ Sci Technol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984754

ABSTRACT

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

5.
J Lipid Res ; 64(3): 100336, 2023 03.
Article in English | MEDLINE | ID: mdl-36706955

ABSTRACT

Lipoprotein(a) [Lp(a)] has two main proteins, apoB100 and apo(a). High levels of Lp(a) confer an increased risk for atherosclerotic cardiovascular disease. Most people have two circulating isoforms of apo(a) differing in their molecular mass, determined by the number of Kringle IV Type 2 repeats. Previous studies report a strong inverse relationship between Lp(a) levels and apo(a) isoform sizes. The roles of Lp(a) production and fractional clearance and how ancestry affects this relationship remain incompletely defined. We therefore examined the relationships of apo(a) size with Lp(a) levels and both apo(a) fractional clearance rates (FCR) and production rates (PR) in 32 individuals not on lipid-lowering treatment. We determined plasma Lp(a) levels and apo(a) isoform sizes, and used the relative expression of the two isoforms to calculate a "weighted isoform size" (wIS). Stable isotope studies were performed, using D3-leucine, to determine the apo(a) FCR and PR. As expected, plasma Lp(a) concentrations were inversely correlated with wIS (R2 = 0.27; P = 0.002). The wIS had a modest positive correlation with apo(a) FCR (R2 = 0.10, P = 0.08), and a negative correlation with apo(a) PR (R2 = 0.11; P = 0.06). The relationship between wIS and PR became significant when we controlled for self-reported race and ethnicity (SRRE) (R2 = 0.24, P = 0.03); controlling for SRRE did not affect the relationship between wIS and FCR. Apo(a) wIS plays a role in both FCR and PR; however, adjusting for SRRE strengthens the correlation between wIS and PR, suggesting an effect of ancestry.


Subject(s)
Atherosclerosis , Lipoprotein(a) , Humans , Apoprotein(a)/metabolism , Apolipoproteins A , Protein Isoforms
6.
Blood ; 137(16): 2161-2170, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33171487

ABSTRACT

Peripheral T-cell lymphomas (PTCLs) are uniquely vulnerable to epigenetic modifiers. We demonstrated in vitro synergism between histone deacetylase inhibitors and DNA methyltransferase inhibitors in preclinical models of T-cell lymphoma. In a phase 1 trial, we found oral 5-azacytidine and romidepsin to be safe and effective, with lineage-selective activity among patients with relapsed/refractory (R/R) PTCL. Patients who were treatment naïve or who had R/R PTCL received azacytidine 300 mg once per day on days 1 to 14, and romidepsin 14 mg/m2 on days 8, 15, and 22 every 35 days. The primary objective was overall response rate (ORR). Targeted next-generation sequencing was performed on tumor samples to correlate mutational profiles and response. Among 25 enrolled patients, the ORR and complete response rates were 61% and 48%, respectively. However, patients with T-follicular helper cell (tTFH) phenotype exhibited higher ORR (80%) and complete remission rate (67%). The most frequent grade 3 to 4 adverse events were thrombocytopenia (48%), neutropenia (40%), lymphopenia (32%), and anemia (16%). At a median follow-up of 13.5 months, the median progression-free survival, duration of response, and overall survival were 8.0 months, 20.3 months, and not reached, respectively. The median progression-free survival and overall survival were 8.0 months and 20.6 months, respectively, in patients with R/R disease. Patients with tTFH enjoyed a particularly long median survival (median not reached). Responders harbored a higher average number of mutations in genes involved in DNA methylation and histone deacetylation. Combined azacytidine and romidepsin are highly active in PTCL patients and could serve as a platform for novel regimens in this disease. This trial was registered at www.clinicaltrials.gov as #NCT01998035.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , Depsipeptides/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Lymphoma, T-Cell, Peripheral/drug therapy , Adult , Aged , Aged, 80 and over , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/administration & dosage , Azacitidine/adverse effects , DNA Methylation/drug effects , Depsipeptides/administration & dosage , Depsipeptides/adverse effects , Female , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/adverse effects , Humans , Lymphoma, T-Cell, Peripheral/genetics , Male , Middle Aged , Mutation/drug effects , Treatment Outcome
7.
Mov Disord ; 38(8): 1535-1541, 2023 08.
Article in English | MEDLINE | ID: mdl-37307400

ABSTRACT

BACKGROUND: Chorea-acanthocytosis (ChAc) is associated with mutations of VPS13A, which encodes for chorein, a protein implicated in lipid transport at intracellular membrane contact sites. OBJECTIVES: The goal of this study was to establish the lipidomic profile of patients with ChAc. METHODS: We analyzed 593 lipid species in the caudate nucleus (CN), putamen, and dorsolateral prefrontal cortex (DLPFC) from postmortem tissues of four patients with ChAc and six patients without ChAc. RESULTS: We found increased levels of bis(monoacylglycerol)phosphate, sulfatide, lysophosphatidylserine, and phosphatidylcholine ether in the CN and putamen, but not in the DLPFC, of patients with ChAc. Phosphatidylserine and monoacylglycerol were increased in the CN and N-acyl phosphatidylserine in the putamen. N-acyl serine was decreased in the CN and DLPFC, whereas lysophosphatidylinositol was decreased in the DLPFC. CONCLUSIONS: We present the first evidence of altered sphingolipid and phospholipid levels in the brains of patients with ChAc. Our observations are congruent with recent findings in cellular and animal models, and implicate defects of lipid processing in VPS13A disease pathophysiology. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Neuroacanthocytosis , Animals , Humans , Neuroacanthocytosis/genetics , Neuroacanthocytosis/metabolism , Phospholipids/metabolism , Phosphatidylserines/metabolism , Vesicular Transport Proteins/genetics , Brain/metabolism
8.
Blood ; 134(17): 1395-1405, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31471376

ABSTRACT

The peripheral T-cell lymphomas (PTCLs) are uniquely sensitive to epigenetic modifiers. Based on the synergism between histone deacetylase inhibitors and hypomethylating agents that we established in preclinical PTCL models, we conducted a phase 1 study of oral 5-azacytidine (AZA) and romidepsin (ROMI) in patients with advanced lymphoid malignancies, with emphasis on PTCL. According to a 3 + 3 design, patients were assigned to 1 of 7 cohorts with AZA doses ranging from 100 mg daily on days 1 to 14 to 300 mg daily on days 1 to 21, ROMI doses ranging from 10 mg/m2 on days 8 and 15 to 14 mg/m2 on days 8, 15, and 22, with cycles of 21 to 35 days. Coprimary end points included maximum tolerated dose (MTD) and dose-limiting toxicity (DLT). We treated a total of 31 patients. The MTD was AZA 300 mg on days 1 to 14 and ROMI 14 mg/m2 on days 8, 15, and 22 on a 35-day cycle. DLTs included grade 4 thrombocytopenia, prolonged grade 3 thrombocytopenia, grade 4 neutropenia, and pleural effusion. There were no treatment-related deaths. The combination was substantially more active in patients with PTCL than in those with non-T-cell lymphoma. The overall response rate in all, non-T-cell, and T-cell lymphoma patients was 32%, 10%, and 73%, respectively, and the complete response rates were 23%, 5%, and 55%, respectively. We did not find an association between response and level of demethylation or tumor mutational profile. This study establishes that combined epigenetic modifiers are potently active in PTCL patients. This trial was registered at www.clinicaltrials.gov as NCT01998035.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Depsipeptides/therapeutic use , Lymphoma, T-Cell/drug therapy , Adult , Aged , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Depsipeptides/administration & dosage , Depsipeptides/adverse effects , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
9.
Arterioscler Thromb Vasc Biol ; 39(1): 63-72, 2019 01.
Article in English | MEDLINE | ID: mdl-30580564

ABSTRACT

Objective- Apo (apolipoprotein) CIII inhibits lipoprotein lipase (LpL)-mediated lipolysis of VLDL (very-low-density lipoprotein) triglyceride (TG) and decreases hepatic uptake of VLDL remnants. The discovery that 5% of Lancaster Old Order Amish are heterozygous for the APOC3 R19X null mutation provided the opportunity to determine the effects of a naturally occurring reduction in apo CIII levels on the metabolism of atherogenic containing lipoproteins. Approach and Results- We conducted stable isotope studies of VLDL-TG and apoB100 in 5 individuals heterozygous for the null mutation APOC3 R19X (CT) and their unaffected (CC) siblings. Fractional clearance rates and production rates of VLDL-TG and apoB100 in VLDL, IDL (intermediate-density lipoprotein), LDL, apo CIII, and apo CII were determined. Affected (CT) individuals had 49% reduction in plasma apo CIII levels compared with CCs ( P<0.01) and reduced plasma levels of TG (35%, P<0.02), VLDL-TG (45%, P<0.02), and VLDL-apoB100 (36%, P<0.05). These changes were because of higher fractional clearance rates of VLDL-TG and VLDL-apoB100 with no differences in production rates. CTs had higher rates of the conversion of VLDL remnants to LDL compared with CCs. In contrast, rates of direct removal of VLDL remnants did not differ between the groups. As a result, the flux of apoB100 from VLDL to LDL was not reduced, and the plasma levels of LDL-cholesterol and LDL-apoB100 were not lower in the CT group. Apo CIII production rate was lower in CTs compared with CCs, whereas apo CII production rate was not different between the 2 groups. The fractional clearance rates of both apo CIII and apo CII were higher in CTs than CCs. Conclusions- These studies demonstrate that 50% reductions in plasma apo CIII, in otherwise healthy subjects, results in a significantly higher rate of conversion of VLDL to LDL, with little effect on direct hepatic uptake of VLDL. When put in the context of studies demonstrating significant protection from cardiovascular events in individuals with loss of function variants in the APOC3 gene, our results provide strong evidence that therapies which increase the efficiency of conversion of VLDL to LDL, thereby reducing remnant concentrations, should reduce the risk of cardiovascular disease.


Subject(s)
Apolipoprotein C-III/physiology , Lipids/blood , Lipoproteins/metabolism , Adult , Aged , Apolipoprotein B-100/metabolism , Apolipoprotein C-III/deficiency , Apolipoprotein C-III/genetics , Female , Humans , Lipolysis , Lipoproteins, IDL/metabolism , Lipoproteins, VLDL/metabolism , Male , Middle Aged , Mutation
10.
J Lipid Res ; 59(12): 2397-2402, 2018 12.
Article in English | MEDLINE | ID: mdl-30293969

ABSTRACT

Elevated lipoprotein (a) [Lp(a)] levels increase the risk for CVD. Novel treatments that decrease LDL cholesterol (LDL-C) have also shown promise for reducing Lp(a) levels. Mipomersen, an antisense oligonucleotide that inhibits apoB synthesis, is approved for the treatment of homozygous familial hypercholesterolemia. It decreases plasma levels of LDL-C by 25% to 39% and lowers levels of Lp(a) by 21% to 39%. We examined the mechanisms for Lp(a) lowering during mipomersen treatment. We enrolled 14 healthy volunteers who received weekly placebo injections for 3 weeks followed by weekly injections of mipomersen for 7 weeks. Stable isotope kinetic studies were performed using deuterated leucine at the end of the placebo and mipomersen treatment periods. The fractional catabolic rate (FCR) of Lp(a) was determined from the enrichment of a leucine-containing peptide specific to apo(a) by LC/MS. The production rate (PR) of Lp(a) was calculated from the product of Lp(a) FCR and Lp(a) concentration (converted to pool size). In a diverse population, mipomersen reduced plasma Lp(a) levels by 21%. In the overall study group, mipomersen treatment resulted in a 27% increase in the FCR of Lp(a) with no significant change in PR. However, there was heterogeneity in the response to mipomersen therapy, and changes in both FCRs and PRs affected the degree of change in Lp(a) concentrations. Mipomersen treatment decreases Lp(a) plasma levels mainly by increasing the FCR of Lp(a), although changes in Lp(a) PR were significant predictors of reductions in Lp(a) levels in some subjects.


Subject(s)
Lipoprotein(a)/blood , Oligonucleotides/pharmacology , Adult , Apolipoprotein B-100/blood , Cholesterol, LDL/blood , Chromatography, Liquid , Female , Humans , Lipid Metabolism/drug effects , Male , Mass Spectrometry , Middle Aged , Oligodeoxyribonucleotides, Antisense/pharmacology
11.
Circulation ; 135(4): 352-362, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-27986651

ABSTRACT

BACKGROUND: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Lipoproteins, VLDL/metabolism , PCSK9 Inhibitors , Adolescent , Adult , Aged , Antibodies, Monoclonal, Humanized , Female , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult
12.
Mol Microbiol ; 94(1): 70-88, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25098820

ABSTRACT

Crop destruction by the hemibiotrophic rice pathogen Magnaporthe oryzae requires plant defence suppression to facilitate extensive biotrophic growth in host cells before the onset of necrosis. How this is achieved at the genetic level is not well understood. Here, we report that a M. oryzae sirtuin, MoSir2, plays an essential role in rice defence suppression and colonization by controlling superoxide dismutase (SOD) gene expression. Loss of MoSir2 function in Δsir2 strains did not affect appressorial function, but biotrophic growth in rice cells was attenuated. Compared to wild type, Δsir2 strains failed to neutralize plant-derived reactive oxygen species (ROS) and elicited robust defence responses in rice epidermal cells that included elevated pathogenesis-related gene expression and granular depositions. Deletion of a SOD-encoding gene under MoSir2 control generated Δsod1 deletion strains that mimicked Δsir2 for impaired rice defence suppression, confirming SOD activity as a downstream output of MoSir2. In addition, comparative protein acetylation studies and forward genetic analyses identified a JmjC domain-containing protein as a likely target of MoSir2, and a Δsir2 Δjmjc double mutant was restored for MoSOD1 expression and defence suppression in rice epidermal cells. Together, this work reveals MoSir2 and MoJmjC as novel regulators of early rice cell infection.


Subject(s)
Fungal Proteins/immunology , Magnaporthe/enzymology , Oryza/microbiology , Plant Diseases/microbiology , Sirtuins/immunology , Fungal Proteins/genetics , Host-Pathogen Interactions , Magnaporthe/genetics , Magnaporthe/immunology , Magnaporthe/physiology , Oryza/immunology , Plant Diseases/immunology , Plant Proteins/immunology , Sirtuins/genetics
13.
J Econ Entomol ; 108(4): 2055-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26470353

ABSTRACT

The western chinch bug, Blissus occiduus Barber, is a serious pest of buffalograss, Buchloe dactyloides (Nuttall) due to physical and chemical damage caused during the feeding process. Although previous work has investigated the feeding behaviors of chinch bugs in the Blissus complex, no study to date has explored salivary gland morphology and the associated salivary complex of this insect. Whole and sectioned B. occiduus salivary glands were visualized using light and scanning electron microscopy to determine overall structure and cell types of the salivary glands and their individual lobes. Microscopy revealed a pair of trilobed principal glands and a pair of tubular accessory glands of differing cellular types. To link structure with function, the salivary gland proteome was characterized using liquid chromatography tandem mass spectrometry. The salivary proteome analysis resulted in B. occiduus sequences matching 228 nonhomologous protein sequences of the pea aphid, Acyrthosiphon pisum (Harris), with many specific to the proteins present in the salivary proteome of A. pisum. A number of sequences were assigned the molecular function of hydrolase and oxido-reductase activity, with one specific protein sequence revealing a peroxidase-like function. This is the first study to characterize the salivary proteome of B. occiduus and the first of any species in the family Blissidae.


Subject(s)
Heteroptera/genetics , Insect Proteins/genetics , Proteome , Animals , Heteroptera/cytology , Heteroptera/ultrastructure , Microscopy, Electron, Scanning , Molecular Sequence Data , Salivary Glands/cytology , Salivary Glands/ultrastructure
14.
J Dairy Sci ; 97(4): 1999-2008, 2014.
Article in English | MEDLINE | ID: mdl-24565320

ABSTRACT

Bacteriocins are a heterogeneous group of ribosomally synthesized peptides or proteins with antimicrobial activity, produced predominantly by lactic acid bacteria, with potential applications as biopreservatives and probiotics. We describe here a novel strategy based on a bottom-up, shotgun proteomic approach using nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) with multiple fragmentation techniques for the quantitative profiling of bacteriocins present in the probiotic preparations of Lactobacillus acidophilus. A direct LC-MS/MS analysis with alternate collision-induced dissociation, high-energy collision dissociation, and electron-transfer dissociation fragmentation following a filter-assisted size-exclusion sample prefractionation has resulted in the identification of peptides belonging to 37 bacteriocins or related proteins. Peptides from lactacin F, helveticin J, lysin, avicin A, acidocin M, curvaticin FS47, and carocin D were predominant. The process of freeze drying under vacuum was observed to affect both the diversity and abundance of bacteriocins. Data acquisition using alternating complementary peptide fragmentation modes, especially electron-transfer dissociation, has significantly enhanced the peptide sequence coverage and number of bacteriocin peptides identified. Multi-enzyme proteolytic digestion was observed to increase the sample complexity and dynamic range, lowering the chances of detection of low-abundant bacteriocin peptides by LC-MS/MS. An analytical platform integrating size exclusion prefractionation, nanoLC-MS/MS analysis with multiple fragmentation techniques, and data-dependent decision tree-driven bioinformatic data analysis is novel in bacteriocin research and suitable for the comprehensive bioanalysis of diverse, low-abundant bacteriocins in complex samples.


Subject(s)
Bacteriocins/analysis , Lactobacillus acidophilus , Probiotics/chemistry , Chromatography, Liquid , Computational Biology , Digestion , Evaluation Studies as Topic , Freeze Drying , Molecular Weight , Mucoproteins/analysis , Peptide Hydrolases/metabolism , Proteolysis , Proteomics , Tandem Mass Spectrometry
15.
Lipids ; 59(4): 85-91, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38320749

ABSTRACT

Hydrophilic endogenous bile acids ursodeoxycholic acid (UDCA), tauroursodeoxycholic acid (TUDCA), and glucourosodeoxycholic acid (GUDCA) have suggested neuroprotective effects. We performed a case-control study to examine the association between ALS diagnosis and serum levels of bile acids. Sporadic and familial ALS patients, age- and sex-matched healthy controls, and presymptomatic gene carriers who donated blood samples were included. Non-fasted serum samples stored at -80°C were used for the analysis. Serum bile acid levels were measured by liquid chromatography-mass spectrometry (LC-MS). Concentrations of 15 bile acids were obtained, 5 non-conjugated and 10 conjugated, and compared between ALS versus control groups (presymptomatic gene carriers + healthy controls) using the Wilcoxon-Rank-Sum test. In total, 80 participants were included: 31 ALS (17 sporadic and 14 familial ALS); 49 controls (22 gene carriers, 27 healthy controls). The mean age was 50 years old and 50% were male. In the ALS group, 45% had familial disease with a pathogenic variant in C9orf72 (29%), TARDBP (10%), FUS (3%), and CHCHD10 (3%) genes. In the control group, 43% carried pathogenic variants: C9orf72 (27%), SOD1 (10%), and FUS (6%). The serum levels of UDCA, TUDCA, and GUDCA trended higher in the ALS group compared to controls (median 27 vs. 7 nM, 4 vs. 3 nM, 110 vs. 47 nM, p-values 0.04, 0.06, 0.04, respectively). No significant group differences were found in other bile acids serum levels. In conclusion, the serum level of UDCA, TUDCA, GUDCA trended higher in ALS patients compared to controls, and no evidence of deficiencies was found.


Subject(s)
Amyotrophic Lateral Sclerosis , Bile Acids and Salts , Humans , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , Male , Female , Middle Aged , Bile Acids and Salts/blood , Case-Control Studies , Adult , Aged
16.
Obes Surg ; 34(7): 2483-2491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777944

ABSTRACT

BACKGROUND: Bariatric surgery alters bile acid metabolism, which contributes to post-operative improvements in metabolic health. However, the mechanisms by which bariatric surgery alters bile acid metabolism are incompletely defined. In particular, the role of the gut microbiome in the effects of bariatric surgery on bile acid metabolism is incompletely understood. Therefore, we sought to define the changes in gut luminal bile acid composition after vertical sleeve gastrectomy (VSG). METHODS: Bile acid profile was determined by UPLC-MS/MS in serum and gut luminal samples from VSG and sham-operated mice. Sham-operated mice were divided into two groups: one was fed ad libitum, while the other was food-restricted to match their body weight to the VSG-operated mice. RESULTS: VSG decreased gut luminal secondary bile acids, which was driven by a decrease in gut luminal deoxycholic acid concentrations and abundance. However, gut luminal cholic acid (precursor for deoxycholic acid) concentration and abundance did not differ between groups. Therefore, the observed decrease in gut luminal deoxycholic acid abundance after VSG was not due to a reduction in substrate availability. CONCLUSION: VSG decreased gut luminal deoxycholic acid abundance independently of body weight, which may be driven by a decrease in gut bacterial bile acid metabolism.


Subject(s)
Deoxycholic Acid , Gastrectomy , Gastrointestinal Microbiome , Animals , Mice , Gastrointestinal Microbiome/physiology , Gastrectomy/methods , Male , Bile Acids and Salts/metabolism , Mice, Inbred C57BL , Bariatric Surgery
17.
Res Sq ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38260644

ABSTRACT

Background: We profiled circulating plasma metabolites to identify systemic biochemical changes in clinical and biomarker-assisted diagnosis of Alzheimer's disease (AD). Methods: We used an untargeted approach with liquid chromatography coupled to high-resolution mass spectrometry to measure small molecule plasma metabolites from 150 clinically diagnosed AD patients and 567 age-matched healthy elderly of Caribbean Hispanic ancestry. Plasma biomarkers of AD were measured including P-tau181, Aß40, Aß42, total-tau, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Association of individual and co-abundant modules of metabolites were tested with clinical diagnosis of AD, as well as biologically-defined AD pathological process based on P-tau181 and other biomarker levels. Results: Over 6000 metabolomic features were measured with high accuracy. First principal component (PC) of lysophosphatidylcholines (lysoPC) that bind to or interact with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was associated with decreased risk of AD (OR = 0.91 [0.89-0.96], p = 2e-04). Association was restricted to individuals without an APOE ε4 allele (OR = 0.89 [0.84-0.94], p = 8.7e-05). Among individuals carrying at least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of AD (OR = 1.37 [1.16-1.6], p = 1e-04). Essential amino acids including tyrosine metabolism pathways were enriched among metabolites associated with P-tau181 levels and heparan and keratan sulfate degradation pathways were associated with Aß42/Aß40 ratio. Conclusions: Unbiased metabolic profiling can identify critical metabolites and pathways associated with ß-amyloid and phosphotau pathology. We also observed an APOE-ε4 dependent association of lysoPCs with AD and biologically based diagnostic criteria may aid in the identification of unique pathogenic mechanisms.

18.
J Psychiatr Res ; 169: 224-230, 2024 01.
Article in English | MEDLINE | ID: mdl-38043258

ABSTRACT

BACKGROUND: Pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α are elevated in response to psychosocial stress; however, less is known about other inflammatory markers. METHODS: We explored response to the Trier Social Stress Test (TSST) of 16 cytokines and growth factors in patients with major depressive disorder (MDD, n = 12) vs. healthy volunteers (HV, n = 16). Outcomes were baseline and post-stress levels estimated by area under the curve (AUCi) and peak change over 3 timepoints. We also explored correlations between biomarkers and clinical characteristics. RESULTS: Baseline concentrations were higher in MDD for platelet-derived growth factor (PDGF)-AB/BB (p = 0.037, d = 0.70), granulocyte-macrophage colony-stimulating factor (GM-CSF, p = 0.033, d = 0.52), and IL-8 (p = 0.046, d = 0.74). After TSST, AUCi was higher in MDD for GM-CSF (p = 0.003, d = 1.21), IL-5 (p = 0.014, d = 1.62), and IL-27 (p = 0.041, d = 0.74). In MDD, depression severity correlated positively with soluble CD40L (sCD40L) for AUCi (Spearman's ρ = 0.76, p = 0.004) and with baseline vascular endothelial growth factor A (VEGFA, r = 0.85, p < 0.001), but negatively with baseline monokine induced by gamma interferon (MIG, aka CXCL9; r = -0.77, p = 0.003). CONCLUSIONS: Effect sizes were robust in this exploratory study, although interpretation of the results must be cautious, given small sample size and multiple comparisons. Differential study of stress-induced biomarkers may have important ramifications for MDD treatment.


Subject(s)
Cytokines , Depressive Disorder, Major , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Depressive Disorder, Major/drug therapy , Vascular Endothelial Growth Factor A/therapeutic use , Tumor Necrosis Factor-alpha , Biomarkers , Stress, Psychological
19.
Gut Microbes ; 16(1): 2315632, 2024.
Article in English | MEDLINE | ID: mdl-38375831

ABSTRACT

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Subject(s)
Gastrointestinal Microbiome , Resistant Starch , Mice , Male , Female , Animals , Gastrointestinal Microbiome/physiology , Bile Acids and Salts , Dietary Supplements , Bacteria/genetics , Deoxycholic Acid
20.
Article in English | MEDLINE | ID: mdl-38744352

ABSTRACT

BACKGROUND: Sarcopenia, characterized by loss of muscle mass and function, is prevalent in heart failure (HF) and predicts poor outcomes. We investigated alterations in sarcopenia index (SI), a surrogate for skeletal muscle mass, in HF, left ventricular assist device (LVAD), and heart transplant (HT), and assessed its relationship with inflammation and digestive tract (gut and oral) microbiota. METHODS: We enrolled 460 HF, LVAD, and HT patients. Repeated measures pre/post-procedures were obtained prospectively in a subset of LVAD and HT patients. SI (serum creatinine/cystatin C) and inflammatory biomarkers (C-reactive protein, interleukin-6, tumor necrosis factor-alpha) were measured in 271 and 622 blood samples, respectively. Gut and saliva microbiota were assessed via 16S ribosomal ribonucleic acid sequencing among 335 stool and 341 saliva samples. Multivariable regression assessed the relationship between SI and (1) New York Heart Association class; (2) pre- versus post-LVAD or HT; and (3) biomarkers of inflammation and microbial diversity. RESULTS: Median (interquartile range) natural logarithm (ln)-SI was -0.13 (-0.32, 0.05). Ln-SI decreased across worsening HF class, further declined at 1 month after LVAD and HT, and rebounded over time. Ln-SI was correlated with inflammation (r = -0.28, p < 0.01), gut (r = 0.28, p < 0.01), and oral microbial diversity (r = 0.24, p < 0.01). These associations remained significant after multivariable adjustment in the combined cohort but not for all individual cohorts. The presence of the gut taxa Roseburia inulinivorans was associated with increased SI. CONCLUSIONS: SI levels decreased in symptomatic HF and remained decreased long-term after LVAD and HT. In the combined cohort, SI levels covaried with inflammation in a similar fashion and were significantly related to overall microbial (gut and oral) diversity, including specific taxa compositional changes.

SELECTION OF CITATIONS
SEARCH DETAIL