Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Org Biomol Chem ; 9(6): 1768-73, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21264409

ABSTRACT

The concomitant use of silver oxide and catalytic amount of TBAF allowed the efficient and chemoselective coupling of readily available 4-chloro- and 4-methyl-2-trimethyl-silyl-pyridines with heteroaromatic and aromatic halides. Based on control experiments, a mechanism involving the formation of a pyridylsilver intermediate and TBAF recycling is postulated.


Subject(s)
Oxides/chemistry , Pyridines/chemistry , Quaternary Ammonium Compounds/chemistry , Silver Compounds/chemistry , Allyl Compounds/chemistry , Catalysis , Cross-Linking Reagents/chemistry , Molecular Structure
2.
J Med Chem ; 64(19): 14377-14425, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34569791

ABSTRACT

This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.


Subject(s)
Acyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(8): 2206-10, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19307114

ABSTRACT

We have been exploring the potential of 5-HT(2B) antagonists as a therapy for chronic heart failure. To assess the potential of this therapeutic approach, we sought compounds possessing the following attributes: (a) potent and selective antagonism of the 5-HT(2B) receptor, (b) low impact of serum proteins on potency, and (c) desirable pharmacokinetic properties. This Letter describes our investigation of a biphenyl benzimidazole class of compounds that resulted in 5-HT(2B) antagonists possessing the above attributes. Improving potency in a human serum albumin shift assay proved to be the most significant SAR discovery.


Subject(s)
Receptor, Serotonin, 5-HT2B/metabolism , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacokinetics , Animals , Binding Sites , Male , Quantitative Structure-Activity Relationship , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Serotonin, 5-HT2B/chemistry , Serotonin Antagonists/classification
4.
J Med Chem ; 49(16): 4981-91, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884310

ABSTRACT

The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the synthesis, structure-activity relationships, and pharmacological characterization of 2-aminopyrimidine carbamates, a new class of compounds with potent and selective inhibition of Lck. The most promising compound of this series, 2,6-dimethylphenyl 2-((3,5-bis(methyloxy)-4-((3-(4-methyl-1-piperazinyl)propyl)oxy)phenyl)amino)-4-pyrimidinyl(2,4-bis(methyloxy)phenyl)carbamate (43) exhibits good activity when evaluated in in vitro assays and in an in vivo model of T cell activation.


Subject(s)
Aminopyridines/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Carbamates/chemical synthesis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Pyrimidines/chemical synthesis , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Biological Availability , Carbamates/chemistry , Carbamates/pharmacology , Crystallography, X-Ray , Humans , In Vitro Techniques , Jurkat Cells , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
5.
J Med Chem ; 58(4): 1669-90, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25671290

ABSTRACT

The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production.


Subject(s)
Acetamides/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Drug Discovery , Lipoxygenase Inhibitors/pharmacology , Oxadiazoles/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Molecular Conformation , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL