Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 116(2): 022701, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26824536

ABSTRACT

Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

3.
Phys Rev Lett ; 117(6): 062501, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27541463

ABSTRACT

Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

4.
Phys Rev Lett ; 112(16): 162701, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815644

ABSTRACT

Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

5.
Phys Rev Lett ; 97(17): 172501, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17155467

ABSTRACT

The results of the Doppler-shift attenuation method lifetime measurements in partner bands of 128Cs and 132La are presented. Experimental reduced transition probabilities in 128Cs are compared with theoretical calculations done in the frame of the core-quasiparticle coupling model. The electromagnetic properties, energy and spin of levels belonging to the partner bands show that 128Cs is the best known example revealing the chiral symmetry breaking phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL