Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Arterioscler Thromb Vasc Biol ; 30(2): 260-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19926832

ABSTRACT

OBJECTIVE: The role of myeloid cell cyclooxygenase-2 (COX-2) in the progression of atherosclerosis has not been clearly defined. METHODS AND RESULTS: We investigated the role of COX-2 expressed in the myeloid lineage in the development of atherosclerosis using a myeloid-specific COX-2(-/-) (COX-2(-M/-M)) mouse on a hyperlipidemic apolipoprotein (apo) E(-/-) background (COX-2(-M/-M)/apoE(-/-)). Myeloid COX-2 depletion resulted in significant attenuation of acute inflammation corresponding with decreased PGE(2) levels in an air pouch model. COX-2 depletion in myeloid cells did not influence development of atherosclerosis in COX-2(-M/-M)/apoE(-/-) when compared to apoE(-/-) littermates fed either chow or western diets. The unanticipated lack of contribution of myeloid COX-2 to the development atherosclerosis is not attributable to altered maintenance, differentiation, or mobilization of myeloid and lymphoid populations. Moreover, myeloid COX-2 depletion resulted in unaltered serum prostanoid levels and cellular composition of atherosclerotic lesions of COX-2(-M/-M)/apoE(-/-) mice. CONCLUSIONS: Our results suggest that COX-2 expression in myeloid cells, including macrophages, does not influence the development of atherosclerosis in mice.


Subject(s)
Aortic Diseases/enzymology , Apolipoproteins E/deficiency , Atherosclerosis/enzymology , Cyclooxygenase 2/deficiency , Inflammation/enzymology , Myeloid Cells/enzymology , Animals , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Cells, Cultured , Cyclooxygenase 2/genetics , Dietary Fats , Dinoprostone/metabolism , Disease Models, Animal , Disease Progression , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/pathology , Tumor Necrosis Factor-alpha/metabolism
2.
Am J Physiol Gastrointest Liver Physiol ; 298(6): G842-50, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20299600

ABSTRACT

Cyclooxygenase-2 (COX-2) is an important regulator of inflammation implicated in the development of a variety of diseases, including inflammatory bowel disease (IBD). However, the regulation of intestinal inflammation by COX-2 is poorly understood. We previously reported that COX-2(-/-) mice fed a cholate-containing high-fat (CCHF) diet had high mortality of unknown mechanisms attributable to severe intestinal inflammation in the ileo-ceco-colic junction that presented characteristics similar to Crohn's disease (CD). To further characterize the role of COX-2 in intestinal inflammation, we established cell-specific conditional COX-2(-/-) mice. Endothelial cell-specific (COX-2(-E/-E)) and myeloid cell-specific (COX-2(-M/-M)) COX-2(-/-) mice, but not wild-type mice, on the CCHF diet developed localized CD-like pathology at the ileo-ceco-colic junction that was associated with cellular infiltration, increased expression of myeloperoxidase and IL-5, and decreased IL-10 expression. The CD-like pathology in COX-2(-E/-E) mice was also accompanied by increased expression of cytokines (IL-6, TNF-alpha, and INF-gamma), compared with wild-type mice and COX-2(-M/-M) mice. In contrast, the ileo-ceco-colic inflammation in COX-2(-M/-M) mice was associated with more pronounced infiltration of granulocytes and macrophages than COX-2(-E/-E) mice. COX-2(-ME/-ME) (COX-2(-M/-M) x COX-2(-E/-E)) mice on the CCHF diet developed CD-like pathology in the ileo-ceco-colic junction reminiscent of total COX-2(-/-) mice on CCHF diet and wild-type mice on CCHF diet treated with COX-2 inhibitor, celecoxib. The pathology of diet-mediated ileo-ceco-colic inflammation in COX-2(-/-) mice offers an excellent model system to elucidate the protective roles of endothelial and myeloid COX-2 and the molecular pathogenesis of CD.


Subject(s)
Crohn Disease/metabolism , Cyclooxygenase 2/metabolism , Endothelial Cells/enzymology , Inflammation/enzymology , Myeloid Cells/enzymology , Animals , Caenorhabditis elegans Proteins , Cecum/pathology , Cholates/adverse effects , Colon, Ascending/pathology , Crohn Disease/genetics , Crohn Disease/pathology , Cyclooxygenase 2/genetics , Dietary Fats/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Female , Ileum/pathology , Inflammation/pathology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Transcription Factors
3.
PLoS One ; 9(2): e88684, 2014.
Article in English | MEDLINE | ID: mdl-24533136

ABSTRACT

Previously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR). We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity. Unlike monoclonal antibody XMetA, XMetS alone had little or no agonist effect on the INSR. However, XMetS was a strong positive allosteric modulator of the INSR that increased the binding affinity for insulin nearly 20-fold. XMetS potentiated insulin-stimulated INSR signaling ∼15-fold or greater including; autophosphorylation of the INSR, phosphorylation of Akt, a major enzyme in the metabolic pathway, and phosphorylation of Erk, a major enzyme in the growth pathway. The enhanced signaling effects of XMetS were more pronounced with Akt than with Erk. In cultured cells, XMetS also enhanced insulin-stimulated glucose transport. In contrast to its effects on the INSR, XMetS did not potentiate IGF-1 activation of the IGF-1 receptor. We studied the effect of XMetS treatment in two mouse models of insulin resistance and diabetes. The first was the diet induced obesity mouse, a hyperinsulinemic, insulin resistant animal, and the second was the multi-low dose streptozotocin/high-fat diet mouse, an insulinopenic, insulin resistant animal. In both models, XMetS normalized fasting blood glucose levels and glucose tolerance. In concert with its ability to potentiate insulin action at the INSR, XMetS reduced insulin and C-peptide levels in both mouse models. XMetS improved the response to exogenous insulin without causing hypoglycemia. These data indicate that an allosteric monoclonal antibody can be generated that markedly enhances the binding affinity of insulin to the INSR. These data also suggest that an INSR monoclonal antibody with these characteristics may have the potential to both improve glucose metabolism in insulinopenic type 2 diabetes mellitus and correct compensatory hyperinsulinism in insulin resistant conditions.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigens, CD/metabolism , Glucose/metabolism , Receptor, Insulin/metabolism , Allosteric Site , Animals , C-Peptide/chemistry , CHO Cells , Cell Separation , Cricetinae , Cricetulus , Diabetes Mellitus, Type 2/metabolism , Flow Cytometry , Humans , Hyperglycemia/metabolism , Hyperinsulinism/metabolism , Insulin/chemistry , Insulin Resistance , Mice , Mice, Inbred C57BL , Obesity/metabolism , Peptide Library , Phosphorylation , Protein Structure, Tertiary , Signal Transduction
4.
MAbs ; 6(1): 262-72, 2014.
Article in English | MEDLINE | ID: mdl-24423625

ABSTRACT

Novel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex. Studies indicated that XMetD bound to the INSR with nanomolar affinity. Addition of insulin reduced the affinity of XMetD to the INSR by 3-fold, and XMetD reduced the affinity of the INSR for insulin 3-fold. In addition to inhibiting INSR binding, XMetD also inhibited insulin-induced INSR signaling by 20- to 100-fold. These signaling functions included INSR autophosphorylation, Akt activation and glucose transport. These data indicated that XMetD was an allosteric antagonist of the INSR because, in addition to inhibiting the INSR via modulation of binding affinity, it also inhibited the INSR via modulation of signaling efficacy. Intraperitoneal injection of XMetD at 10 mg/kg twice weekly into normal mice induced insulin resistance. When sustained-release insulin implants were placed into normal mice, they developed fasting hypoglycemia in the range of 50 mg/dl. This hypoglycemia was reversed by XMetD treatment. These studies demonstrate that allosteric monoclonal antibodies, such as XMetD, can antagonize INSR signaling both in vitro and in vivo. They also suggest that this class of allosteric monoclonal antibodies has the potential to treat hyperinsulinemic hypoglycemia resulting from conditions such as insulinoma, congenital hyperinsulinism and insulin overdose.


Subject(s)
Antibodies, Monoclonal/immunology , Congenital Hyperinsulinism/immunology , Receptor, Insulin/antagonists & inhibitors , Single-Chain Antibodies/immunology , Animals , Antibodies, Monoclonal/pharmacology , Biological Transport, Active/drug effects , Biological Transport, Active/immunology , CHO Cells , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/pathology , Cricetinae , Cricetulus , Glucose/immunology , Insulin Resistance/immunology , Mice , Rats , Receptor, Insulin/immunology , Single-Chain Antibodies/pharmacology
5.
Diabetes ; 61(5): 1263-71, 2012 May.
Article in English | MEDLINE | ID: mdl-22403294

ABSTRACT

Many patients with diabetes mellitus (both type 1 and type 2) require therapy to maintain normal fasting glucose levels. To develop a novel treatment for these individuals, we used phage display technology to target the insulin receptor (INSR) complexed with insulin and identified a high affinity, allosteric, human monoclonal antibody, XMetA, which mimicked the glucoregulatory, but not the mitogenic, actions of insulin. Biophysical studies with cultured cells expressing human INSR demonstrated that XMetA acted allosterically and did not compete with insulin for binding to its receptor. XMetA was found to function as a specific partial agonist of INSR, eliciting tyrosine phosphorylation of INSR but not the IGF-IR. Although this antibody activated metabolic signaling, leading to enhanced glucose uptake, it neither activated Erk nor induced proliferation of cancer cells. In an insulin resistant, insulinopenic model of diabetes, XMetA markedly reduced elevated fasting blood glucose and normalized glucose tolerance. After 6 weeks, significant improvements in HbA(1c), dyslipidemia, and other manifestations of diabetes were observed. It is noteworthy that hypoglycemia and weight gain were not observed during these studies. These studies indicate, therefore, that allosteric monoclonal antibodies have the potential to be novel, ultra-long acting, agents for the regulation of hyperglycemia in diabetes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Blood Glucose/physiology , Diabetes Mellitus, Experimental/therapy , Receptor, Insulin/agonists , Animals , Antibodies, Monoclonal/therapeutic use , Antibody Specificity , Biomarkers , CHO Cells , Cells, Cultured , Cricetinae , Glucose Tolerance Test , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred ICR , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL