Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Am J Hum Genet ; 108(12): 2368-2384, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34800363

ABSTRACT

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.


Subject(s)
Ataxia/genetics , Epilepsy/genetics , Hearing Loss/genetics , Ketoglutarate Dehydrogenase Complex/genetics , Mutation , Neurodevelopmental Disorders/genetics , Vision Disorders/genetics , Alleles , Animals , Cells, Cultured , Child , Cohort Studies , DNA Mutational Analysis , Drosophila melanogaster/genetics , Family Health , Female , Fibroblasts , Humans , Male , RNA Splicing
2.
Brain ; 146(7): 2730-2738, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36860166

ABSTRACT

ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.


Subject(s)
Dystonia , Dystonic Disorders , Humans , Dystonia/genetics , Dystonic Disorders/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Mutation, Missense , Pedigree , Proteins/genetics
3.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628761

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Fibroblasts
4.
Hum Mutat ; 42(6): 699-710, 2021 06.
Article in English | MEDLINE | ID: mdl-33715266

ABSTRACT

Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.


Subject(s)
Leigh Disease/genetics , Mitochondrial Diseases/genetics , NADPH Dehydrogenase/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Consanguinity , Electron Transport Complex I/genetics , Family , Female , Genetic Predisposition to Disease , Humans , Italy , Leigh Disease/complications , Leigh Disease/pathology , Male , Mitochondrial Diseases/complications , Mitochondrial Diseases/pathology , Phenotype , Polymorphism, Single Nucleotide
5.
Neurogenetics ; 22(4): 347-351, 2021 10.
Article in English | MEDLINE | ID: mdl-34387792

ABSTRACT

PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.


Subject(s)
Brain/pathology , Group VI Phospholipases A2/genetics , Mutation/genetics , Parkinson Disease/genetics , Adult , Age of Onset , Atrophy/pathology , Female , Humans , Nervous System Malformations/genetics , Neuroaxonal Dystrophies/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Phenotype
6.
J Hum Genet ; 66(8): 835-840, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33612823

ABSTRACT

MSTO1 is a cytoplasmic protein that modulates mitochondrial dynamics by promoting mitochondrial fusion. Mutations in the MSTO1 gene are responsible for an extremely rare condition characterized by early-onset myopathy and cerebellar ataxia. We report here two siblings from a large Ashkenazi Jewish family, presenting with a progressive neuromuscular disease characterized by ataxia and myopathy. By whole exome sequencing, we found a novel homozygous missense mutation (c.1403T>A, p.Leu468Gln) in MSTO1. Studies performed on fibroblasts from the index patient demonstrated the pathogenic role of the identified variant; we found that MSTO1 protein level was reduced and that mitochondrial network was fragmented or formed enlarged structures. Moreover, patient's cells showed reduced mitochondrial DNA amount. Our report confirms that MSTO1 mutations are typically recessive, and associated with clinical phenotypes characterized by early-onset muscle impairment and ataxia, often with upper motor neuron signs and varied cognitive impairment.


Subject(s)
Ataxia/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Muscular Diseases/genetics , Adult , Female , Fibroblasts/metabolism , Homozygote , Humans , Jews/genetics , Mutation, Missense , Pedigree , Phenotype , Siblings , Exome Sequencing , Young Adult
7.
Ann Neurol ; 88(1): 18-32, 2020 07.
Article in English | MEDLINE | ID: mdl-32219868

ABSTRACT

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Subject(s)
ATP-Dependent Proteases/genetics , ATPases Associated with Diverse Cellular Activities/genetics , GTP Phosphohydrolases/genetics , Optic Atrophy/genetics , Optic Nerve Diseases/genetics , Adolescent , Adult , Aged , Child , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Pedigree , Exome Sequencing , Young Adult
8.
Hum Mutat ; 41(10): 1745-1750, 2020 10.
Article in English | MEDLINE | ID: mdl-32652806

ABSTRACT

Biallelic mutations in the C1QBP gene have been associated with mitochondrial cardiomyopathy and combined respiratory-chain deficiencies, with variable onset (including intrauterine or neonatal forms), phenotypes, and severity. We studied two unrelated adult patients from consanguineous families, presenting with progressive external ophthalmoplegia (PEO), mitochondrial myopathy, and without any heart involvement. Muscle biopsies from both patients showed typical mitochondrial alterations and the presence of multiple mitochondrial DNA deletions, whereas biochemical defects of the respiratory chain were present only in one subject. Using next-generation sequencing approaches, we identified homozygous mutations in C1QBP. Immunoblot analyses in patients' muscle samples revealed a strong reduction in the amount of the C1QBP protein and varied impairment of respiratory chain complexes, correlating with disease severity. Despite the original study indicated C1QBP mutations as causative for mitochondrial cardiomyopathy, our data indicate that mutations in C1QBP have to be considered in subjects with PEO phenotype or primary mitochondrial myopathy and without cardiomyopathy.


Subject(s)
Carrier Proteins , Mitochondrial Myopathies , Mitochondrial Proteins , Ophthalmoplegia, Chronic Progressive External , Ophthalmoplegia , Carrier Proteins/genetics , DNA, Mitochondrial/genetics , Homozygote , Humans , Mitochondrial Myopathies/genetics , Mitochondrial Proteins/genetics , Mutation , Ophthalmoplegia/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/pathology
9.
Hum Mutat ; 40(5): 601-618, 2019 05.
Article in English | MEDLINE | ID: mdl-30801875

ABSTRACT

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.


Subject(s)
Dynamins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/genetics , Muscles/metabolism , Muscles/pathology , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , DNA Mutational Analysis , Dynamins/chemistry , Fibroblasts/metabolism , Genetic Association Studies/methods , Humans , Magnetic Resonance Imaging/methods , Models, Biological , Muscles/ultrastructure , Mutation , Protein Conformation , Structure-Activity Relationship
10.
Am J Hum Genet ; 97(1): 186-93, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26094573

ABSTRACT

Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.


Subject(s)
DNA Replication/genetics , DNA, Mitochondrial/physiology , Mitochondrial Encephalomyopathies/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , RNA/metabolism , Ribonuclease H/genetics , Adult , Amino Acid Sequence , Base Sequence , Blotting, Southern , Blotting, Western , DNA, Mitochondrial/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mitochondrial Encephalomyopathies/pathology , Molecular Sequence Data , Mutation/genetics , Ophthalmoplegia, Chronic Progressive External/pathology , Pedigree
11.
Hum Mutat ; 38(8): 970-977, 2017 08.
Article in English | MEDLINE | ID: mdl-28544275

ABSTRACT

We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients' fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.


Subject(s)
Ataxia/genetics , Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Mitochondrial Dynamics/physiology , Muscular Diseases/genetics , Mutation/genetics , Ataxia/etiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Mitochondrial Dynamics/genetics , Muscular Diseases/etiology
12.
Biochim Biophys Acta ; 1857(8): 1326-1335, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26968897

ABSTRACT

Next Generation Sequencing (NGS) technologies are revolutionizing the diagnostic screening for rare disease entities, including primary mitochondrial disorders, particularly those caused by nuclear gene defects. NGS approaches are able to identify the causative gene defects in small families and even single individuals, unsuitable for investigation by traditional linkage analysis. These technologies are contributing to fill the gap between mitochondrial disease cases defined on the basis of clinical, neuroimaging and biochemical readouts, which still outnumber by approximately 50% the cases for which a molecular-genetic diagnosis is attained. We have been using a combined, two-step strategy, based on targeted genes panel as a first NGS screening, followed by whole exome sequencing (WES) in still unsolved cases, to analyze a large cohort of subjects, that failed to show mutations in mtDNA and in ad hoc sets of specific nuclear genes, sequenced by the Sanger's method. Not only this approach has allowed us to reach molecular diagnosis in a significant fraction (20%) of these difficult cases, but it has also revealed unexpected and conceptually new findings. These include the possibility of marked variable penetrance of recessive mutations, the identification of large-scale DNA rearrangements, which explain spuriously heterozygous cases, and the association of mutations in known genes with unusual, previously unreported clinical phenotypes. Importantly, WES on selected cases has unraveled the presence of pathogenic mutations in genes encoding non-mitochondrial proteins (e.g. the transcription factor E4F1), an observation that further expands the intricate genetics of mitochondrial disease and suggests a new area of investigation in mitochondrial medicine. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Subject(s)
DNA, Mitochondrial/genetics , Electron Transport Chain Complex Proteins/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mutation , Repressor Proteins/genetics , Adolescent , Amino Acid Sequence , Child , Child, Preschool , Cohort Studies , DNA, Mitochondrial/metabolism , Electron Transport , Electron Transport Chain Complex Proteins/metabolism , Exome , Female , Gene Expression , Heterozygote , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Infant , Male , Mitochondria/pathology , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Molecular Sequence Data , Repressor Proteins/metabolism , Sequence Alignment , Ubiquitin-Protein Ligases , Young Adult
14.
Hum Mutat ; 37(9): 898-903, 2016 09.
Article in English | MEDLINE | ID: mdl-27328748

ABSTRACT

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion, and mitochondrial dynamics is important for several cellular functions. DNM1L is the most important mediator of mitochondrial fission, with a role also in peroxisome division. Few reports of patients with genetic defects in DNM1L have been published, most of them describing de novo dominant mutations. We identified compound heterozygous DNM1L variants in two brothers presenting with an infantile slowly progressive neurological impairment. One variant was a frame-shift mutation, the other was a missense change, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. In conclusion, we described a recessive disease caused by DNM1L mutations, with a clinical phenotype resembling mitochondrial disorders but without any biochemical features typical of these syndromes (lactic acidosis, respiratory chain complex deficiency) or indicating a peroxisomal disorder.


Subject(s)
Brain Diseases/genetics , GTP Phosphohydrolases/genetics , Microtubule-Associated Proteins/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mutation , Adolescent , Alleles , Brain Diseases/pathology , Child, Preschool , Codon, Nonsense , Dynamins , Frameshift Mutation , Humans , Male , Mitochondrial Dynamics , Pedigree , Peroxisomes/pathology
15.
Hum Mutat ; 35(8): 983-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24827421

ABSTRACT

By way of whole-exome sequencing, we identified a homozygous missense mutation in VARS2 in one subject with microcephaly and epilepsy associated with isolated deficiency of the mitochondrial respiratory chain (MRC) complex I and compound heterozygous mutations in TARS2 in two siblings presenting with axial hypotonia and severe psychomotor delay associated with multiple MRC defects. The nucleotide variants segregated within the families, were absent in Single Nucleotide Polymorphism (SNP) databases and are predicted to be deleterious. The amount of VARS2 and TARS2 proteins and valyl-tRNA and threonyl-tRNA levels were decreased in samples of afflicted patients according to the genetic defect. Expression of the corresponding wild-type transcripts in immortalized mutant fibroblasts rescued the biochemical impairment of mitochondrial respiration and yeast modeling of the VARS2 mutation confirmed its pathogenic role. Taken together, these data demonstrate the role of the identified mutations for these mitochondriopathies. Our study reports the first mutations in the VARS2 and TARS2 genes, which encode two mitochondrial aminoacyl-tRNA synthetases, as causes of clinically distinct, early-onset mitochondrial encephalopathies.


Subject(s)
HLA Antigens/genetics , Mitochondria/genetics , Mitochondrial Encephalomyopathies/genetics , Mutation , Threonine-tRNA Ligase/genetics , Valine-tRNA Ligase/genetics , Cell Line , Child , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HLA Antigens/metabolism , Heterozygote , Homozygote , Humans , Infant , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Encephalomyopathies/enzymology , Mitochondrial Encephalomyopathies/pathology , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Thr/genetics , RNA, Transfer, Thr/metabolism , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Threonine-tRNA Ligase/metabolism , Valine-tRNA Ligase/metabolism
17.
Ann Clin Transl Neurol ; 11(6): 1615-1629, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750253

ABSTRACT

OBJECTIVE: COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS: Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS: We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION: These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.


Subject(s)
Phenotype , Transcriptome , Humans , Male , Female , Child , Child, Preschool , Epilepsy/genetics , Fibroblasts/metabolism , Adolescent , Autism Spectrum Disorder/genetics , Adult , Transferases
18.
Front Genet ; 14: 1089956, 2023.
Article in English | MEDLINE | ID: mdl-37456669

ABSTRACT

Primary mitochondrial diseases are progressive genetic disorders affecting multiple organs and characterized by mitochondrial dysfunction. These disorders can be caused by mutations in nuclear genes coding proteins with mitochondrial localization or by genetic defects in the mitochondrial genome (mtDNA). The latter include point pathogenic variants and large-scale deletions/rearrangements. MtDNA molecules with the wild type or a variant sequence can exist together in a single cell, a condition known as mtDNA heteroplasmy. MtDNA single point mutations are typically detected by means of Next-Generation Sequencing (NGS) based on short reads which, however, are limited for the identification of structural mtDNA alterations. Recently, new NGS technologies based on long reads have been released, allowing to obtain sequences of several kilobases in length; this approach is suitable for detection of structural alterations affecting the mitochondrial genome. In the present work we illustrate the optimization of two sequencing protocols based on long-read Oxford Nanopore Technology to detect mtDNA structural alterations. This approach presents strong advantages in the analysis of mtDNA compared to both short-read NGS and traditional techniques, potentially becoming the method of choice for genetic studies on mtDNA.

19.
Ann Clin Transl Neurol ; 10(10): 1844-1853, 2023 10.
Article in English | MEDLINE | ID: mdl-37644805

ABSTRACT

OBJECTIVES: Pathogenic variants in AIFM1 have been associated with a wide spectrum of disorders, spanning from CMT4X to mitochondrial encephalopathy. Here we present a novel phenotype and review the existing literature on AIFM1-related disorders. METHODS: We performed EEG recordings, brain MRI and MR Spectroscopy, metabolic screening, echocardiogram, clinical exome sequencing (CES) and family study. Effects of the variant were established on cultured fibroblasts from skin punch biopsy. RESULTS: The patient presented with drug-resistant, electro-clinical, multifocal seizures 6 h after birth. Brain MRI revealed prominent brain swelling of both hemispheres and widespread signal alteration in large part of the cortex and of the thalami, with sparing of the basal nuclei. CES analysis revealed the likely pathogenic variant c.5T>C; p.(Phe2Ser) in the AIFM1 gene. The affected amino acid residue is located in the mitochondrial targeting sequence. Functional studies on cultured fibroblast showed a clear reduction in AIFM1 protein amount and defective activities of respiratory chain complexes I, III and IV. No evidence of protein mislocalization or accumulation of precursor protein was observed. Riboflavin, Coenzyme Q10 and thiamine supplementation was therefore given. At 6 months of age, the patient exhibited microcephaly but did not experience any further deterioration. He is still fed orally and there is no evidence of muscle weakness or atrophy. INTERPRETATION: This is the first AIFM1 case associated with neonatal seizures and diffuse white matter involvement with relative sparing of basal ganglia, in the absence of clinical signs suggestive of myopathy or motor neuron disease.


Subject(s)
Mitochondrial Encephalomyopathies , Motor Neuron Disease , Male , Infant, Newborn , Humans , Mitochondria/genetics , Thiamine , Seizures , Apoptosis Inducing Factor
20.
Cells ; 11(6)2022 03 12.
Article in English | MEDLINE | ID: mdl-35326425

ABSTRACT

Endonuclease G (ENDOG) is a nuclear-encoded mitochondrial-localized nuclease. Although its precise biological function remains unclear, its proximity to mitochondrial DNA (mtDNA) makes it an excellent candidate to participate in mtDNA replication, metabolism and maintenance. Indeed, several roles for ENDOG have been hypothesized, including maturation of RNA primers during mtDNA replication, splicing of polycistronic transcripts and mtDNA repair. To date, ENDOG has been deemed as a determinant of cardiac hypertrophy, but no pathogenic variants or genetically defined patients linked to this gene have been described. Here, we report biallelic ENDOG variants identified by NGS in a patient with progressive external ophthalmoplegia, mitochondrial myopathy and multiple mtDNA deletions in muscle. The absence of the ENDOG protein in the patient's muscle and fibroblasts indicates that the identified variants are pathogenic. The presence of multiple mtDNA deletions supports the role of ENDOG in mtDNA maintenance; moreover, the patient's clinical presentation is very similar to mitochondrial diseases caused by mutations in other genes involved in mtDNA homeostasis. Although the patient's fibroblasts did not present multiple mtDNA deletions or delay in the replication process, interestingly, we detected an accumulation of low-level heteroplasmy mtDNA point mutations compared with age-matched controls. This may indicate a possible role of ENDOG in mtDNA replication or repair. Our report provides evidence of the association of ENDOG variants with mitochondrial myopathy.


Subject(s)
Endodeoxyribonucleases , Mitochondrial Myopathies , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Endonucleases , Humans , Mitochondria/metabolism , Mitochondrial Myopathies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL