Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294405

ABSTRACT

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Subject(s)
Endoribonucleases/metabolism , Monocytes/immunology , Neutrophils/immunology , RNA, Bacterial/metabolism , RNA, Protozoan/metabolism , Toll-Like Receptor 8/metabolism , CRISPR-Cas Systems , Cell Line , Endoribonucleases/immunology , Erythrocytes/immunology , Erythrocytes/parasitology , Escherichia coli/chemistry , Escherichia coli/immunology , Gene Editing/methods , Humans , Listeria monocytogenes/chemistry , Listeria monocytogenes/immunology , Monocytes/microbiology , Monocytes/parasitology , Neutrophils/microbiology , Neutrophils/parasitology , Plasmodium falciparum/chemistry , Plasmodium falciparum/immunology , Primary Cell Culture , RNA Stability , RNA, Bacterial/immunology , RNA, Protozoan/immunology , Serratia marcescens/chemistry , Serratia marcescens/immunology , Staphylococcus aureus/chemistry , Staphylococcus aureus/immunology , Streptococcus/chemistry , Streptococcus/immunology , THP-1 Cells , Toll-Like Receptor 8/immunology
2.
Cells ; 12(2)2023 01 05.
Article in English | MEDLINE | ID: mdl-36672163

ABSTRACT

Epilepsy and mental retardation are known to be associated with pathogenic mutations in a broad range of genes that are expressed in the brain and have a role in neurodevelopment. Here, we report on a family with three affected individuals whose clinical symptoms closely resemble a neurodevelopmental disorder. Whole-exome sequencing identified a homozygous stop-gain mutation, p.Gln19*, in the BATF2 gene in the patients. The BATF2 transcription factor is predominantly expressed in macrophages and monocytes and has been reported to modulate AP-1 transcription factor-mediated pro-inflammatory responses. Transcriptome analysis showed altered base-level expression of interferon-stimulated genes in the patients' blood, typical for type I interferonopathies. Peripheral blood mononuclear cells from all three patients demonstrated elevated responses to innate immune stimuli, which could be reproduced in CRISPR-Cas9-generated BATF2-/- human monocytic cell lines. BATF2 is, therefore, a novel disease-associated gene candidate for severe epilepsy and mental retardation related to dysregulation of immune responses, which underscores the relevance of neuroinflammation for epilepsy.


Subject(s)
Intellectual Disability , Transcription Factors , Humans , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Leukocytes, Mononuclear/metabolism , Immunity , Phenotype
3.
Front Immunol ; 10: 371, 2019.
Article in English | MEDLINE | ID: mdl-30972055

ABSTRACT

During blood-stage malaria, the innate immune system initiates the production of pro-inflammatory cytokines, including IFN-γ, that are critical to host defense and responsible for severe disease. Nonetheless, the innate immune pathways activated during this process in human malaria remain poorly understood. Here, we identify TLR8 as an essential sensor of Plasmodium falciparum-infected red blood cells (iRBC). In human immune cells, iRBC and RNA purified from iRBC were detected by TLR8 but not TLR7 leading to IFN-γ induction in NK cells. While TLR7 and 9 have been shown to lead to IFN-γ in mice, our data demonstrate that TLR8 was the only TLR capable of inducing IFN-γ release in human immune cells. This unique capacity was mediated by the release of IL-12p70 and bioactive IL-18 from monocytes, the latter via a hitherto undescribed pathway. Altogether, our data are the first reported activation of TLR8 by protozoan RNA and demonstrate both the critical role of TLR8 in human blood-stage malaria and its unique functionality in the human immune system. Moreover, our study offers important evidence that mouse models alone may not be sufficient to describe the human innate immune response to malaria.


Subject(s)
Erythrocytes/parasitology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Malaria, Falciparum/immunology , RNA, Protozoan/immunology , Toll-Like Receptor 8/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , HEK293 Cells , Humans , Immunity, Innate/immunology , Interleukin-12/immunology , Interleukin-18/immunology , Lymphocyte Activation/immunology , Mice , Monocytes/immunology , Plasmodium falciparum/immunology , RNA, Protozoan/genetics , THP-1 Cells , Toll-Like Receptor 7/immunology
SELECTION OF CITATIONS
SEARCH DETAIL