Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Plant Dis ; 108(2): 398-406, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37622276

ABSTRACT

Onion thrips, Thrips tabaci (Lindeman), transmits iris yellow spot virus (IYSV) and is one of the most important pests of Allium crops. IYSV is a member of the species Tospovirus iridimaculaflavi in the genus Orthotospovirus of the family Tospoviridae. This virus typically reduces overall onion bulb quality and weight but can also prematurely kill onion plants. IYSV is neither seed nor mechanically transmitted. Onion fields are typically established via seeds and transplants. A decade ago, onion thrips tended to colonize transplanted fields before seeded fields because plants in transplanted fields were larger and more attractive to thrips than smaller onions in seeded fields. Therefore, we hypothesized that the incidence of IYSV in transplanted fields would be detected early in the season and be spatially aggregated, whereas IYSV would be absent from seeded fields early in the season and initial epidemic patterns would be spatially random. In 2021 and 2022, IYSV incidence and onion thrips populations were quantified in 12 onion fields (four transplanted fields and eight seeded fields) in New York. Fields were scouted four times throughout the growing season (n = 96 samples), and a geospatial and temporal analysis of aggregation and incidence was conducted to determine spatiotemporal patterns in each field type. Results indicated that spatial patterns of IYSV incidence and onion thrips populations were similar early in the season, indicating that transplanted onion fields are no longer the dominant early-season source of IYSV in New York. These findings suggest the need to identify other important early-season sources of IYSV that impact New York onion fields.


Subject(s)
Thysanoptera , Tospovirus , Animals , Onions , New York , Plant Diseases , Seeds
2.
Plant Dis ; 108(6): 1750-1754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38213120

ABSTRACT

Iris yellow spot virus (IYSV) poses a significant threat to dry bulb onion, Allium cepa L., production and can lead to substantial yield reductions. IYSV is transmitted by onion thrips, Thrips tabaci (Lindeman), but not via seed. Transplanted onion fields have been major early season sources of IYSV epidemics. As onion thrips tend to disperse short distances, seeded onion fields bordering transplanted onion fields may be at greater risk of IYSV infection than seeded fields isolated from transplanted ones. Additionally, seeded onion fields planted early may be at greater risk of IYSV infection than those seeded later. In a 2-year study in New York, we compared IYSV incidence and onion thrips populations in seeded onion fields relative to their proximity to transplanted onion fields. In a second study, we compared IYSV incidence in onion fields with either small or large plants during midseason. Results showed similar IYSV incidence and onion thrips populations in seeded onion fields regardless of their proximity to transplanted onion fields, while IYSV incidence was over four times greater in large onion plants than in small ones during midseason. These findings suggest a greater risk of onion thrips-mediated IYSV infection in onion fields with large plants compared with small ones during midseason and that proximity of seeded fields to transplanted ones is a poor indicator of IYSV risk. Our findings on IYSV spread dynamics provided valuable insights for developing integrated pest and disease management strategies for New York onion growers.


Subject(s)
Onions , Plant Diseases , Thysanoptera , Onions/virology , Plant Diseases/virology , New York , Animals , Thysanoptera/virology , Thysanoptera/physiology , Insect Vectors/virology
3.
Phytopathology ; 111(10): 1851-1861, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33736453

ABSTRACT

The transmission mode of grapevine red blotch virus (GRBV, genus Grablovirus, family Geminiviridae) by Spissistilus festinus, the three-cornered alfalfa hopper, is unknown. By analogy with other members in the family Geminiviridae, we hypothesized circulative, nonpropagative transmission. Time-course experiments revealed GRBV in dissected guts, hemolymph, and heads with salivary glands after a 5-, 8-, and 10-day exposure to infected grapevines, respectively. After a 15-day acquisition on infected grapevines and subsequent transfer on alfalfa, a nonhost of GRBV, the virus titer decreased over time in adult insects, as shown by quantitative PCR. Snap bean proved to be a feeding host of S. festinus and a pseudosystemic host of GRBV after Agrobacterium tumefaciens-mediated delivery of an infectious clone. The virus was efficiently transmitted by S. festinus from infected snap bean plants to excised snap bean trifoliates (90%) or grapevine leaves (100%) but less efficiently from infected grapevine plants to excised grapevine leaves (10%) or snap bean trifoliates (67%). Transmission of GRBV also occurred trans-stadially but not via seeds. The virus titer was significantly higher in (i) guts and hemolymph relative to heads with salivary glands, and (ii) adults emanating from third compared with first instars that emerged on infected grapevine plants and developed on snap bean trifoliates. This study demonstrated circulative, nonpropagative transmission of GRBV by S. festinus with an extended acquisition access period compared with other viruses in the family Geminiviridae and marked differences in transmission efficiency between grapevine, the natural host, and snap bean, an alternative herbaceous host.


Subject(s)
Geminiviridae , Medicago sativa , Geminiviridae/genetics , Plant Diseases
4.
J Insect Sci ; 19(3)2019 May 01.
Article in English | MEDLINE | ID: mdl-31127944

ABSTRACT

Iris yellow spot virus (IYSV) from the genus Tospovirus, family Peribunyaviridae, reduces yield in several crops, especially Allium spp. IYSV is primarily transmitted by onion thrips (Thrips tabaci), but little is known about how IYSV impacts the biology of its principal vector. In a controlled experiment, the effect of IYSV on the lifespan and fecundity of onion thrips was examined. Larvae were reared on IYSV-infected onions until pupation. Individual pupae were confined until adults eclosed, and the lifespan and total progeny produced per adult were monitored daily. Thrips were tested for the virus in reverse-transcriptase polymerase chain reaction using specific primers to confirm the presence of IYSV. Results indicated that 114 and 35 out of 149 eclosing adults tested positive (viruliferous) and negative (nonviruliferous) for IYSV, respectively. The viruliferous adults lived 1.1-6.1 d longer (average of 3.6 d) than nonviruliferous adults. Fecundity of viruliferous and nonviruliferous onion thrips was similar with 2.0 ± 0.1 and 2.3 ± 0.3 offspring produced per female per day, respectively. Fecundity for both viruliferous and nonviruliferous thrips also was significantly positively correlated with lifespan. These findings suggest that the longer lifespan of viruliferous onion thrips adults may allow this primary vector of IYSV to infect more plants, thereby exacerbating IYSV epidemics.


Subject(s)
Thysanoptera/virology , Tospovirus/physiology , Animals , Female , Fertility , Insect Vectors/virology , Longevity , Onions/virology , Plant Diseases/virology , Thysanoptera/physiology
5.
Ecol Appl ; 28(3): 842-853, 2018 04.
Article in English | MEDLINE | ID: mdl-29617038

ABSTRACT

Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression benefits.


Subject(s)
Biomass , Brassicaceae , Herbivory , Host-Parasite Interactions , Insecta/parasitology , Animals , Larva/parasitology
6.
Plant Dis ; 102(7): 1264-1272, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30673575

ABSTRACT

Iris yellow spot virus (IYSV) is an economically significant tospovirus of onion transmitted by onion thrips (Thrips tabaci Lindeman). IYSV epidemics in onion fields are common in New York; however, the role of various habitats contributing to viruliferous onion thrips populations and IYSV epidemics is not known. In a 2-year field study in New York, the abundance of dispersing onion thrips, including those determined to be viruliferous via reverse-transcriptase polymerase chain reaction, was recorded in habitats known to harbor both IYSV and its vector. Results showed that viruliferous thrips were encountered in all habitats; however, transplanted onion sites accounted for 49 to 51% of the total estimated numbers of viruliferous thrips. During early to midseason, transplanted onion sites had 9 to 11 times more viruliferous thrips than the other habitats. These results indicate that transplanted onion fields are the most important habitat for generating IYSV epidemics in all onion fields (transplanted and direct-seeded) in New York. Our findings suggest that onion growers should control onion thrips in transplanted fields early in the season to minimize risk of IYSV epidemics later in the season.


Subject(s)
Onions/parasitology , Thysanoptera/physiology , Thysanoptera/virology , Tospovirus/physiology , Animals , Ecosystem , Epidemics , Geography , Insect Vectors/genetics , Insect Vectors/physiology , Insect Vectors/virology , New York , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/virology , Seasons , Thysanoptera/genetics , Tospovirus/genetics
7.
J Econ Entomol ; 117(1): 259-267, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38142131

ABSTRACT

Allium leafminer (Phytomyza gymnostoma Loew) is a recent invasive pest in the United States causing serious economic loss in organic allium crops. Organic management of P. gymnostoma is currently limited to foliar applications of spinosad, but this strategy is not always sufficient under high infestations. Nonchemical management tools used either alone or in combination with spinosad are needed to improve P. gymnostoma management. Reflective mulch alone or combined with spinosad as well as insect exclusion coverings were evaluated for managing P. gymnostoma in allium crops in New York from 2018 to 2021. Reflective mulch alone reduced the numbers of oviposition marks by 16% and densities of larvae plus pupae by 40% compared with those in standard plastic mulch. Reflective mulch combined with 1 spinosad application reduced P. gymnostoma densities to levels lower than those in reflective mulch alone, but 2 spinosad applications were required to provide an acceptable control level. Combining with reflective mulch, row covers, and insect netting reduced P. gymnostoma densities by 76% compared with those without physical barriers, and the level of control was comparable to that provided by 2 spinosad applications. Phytomyza gymnostoma densities in allium crops grown under row covers deployed throughout the entire period when flies were active tended to be lower than those protected during shorter periods (80% reduction). Future management of P. gymnostoma in allium crops should consider either combining reflective mulch with 2 foliar spinosad applications or deploying insect exclusion coverings. The advantages and challenges of using these management strategies are discussed.


Subject(s)
Diptera , Female , Animals , Insect Control , Crops, Agricultural , Insecta , Larva
8.
Front Insect Sci ; 3: 1233130, 2023.
Article in English | MEDLINE | ID: mdl-38469533

ABSTRACT

Allium leafminer (Phytomyza gymnostoma Loew) is an emerging invasive pest of Allium crops and has been threatening Allium crop production in the eastern United States since its introduction in 2015. Phytomyza gymnostoma can cause substantial economic loss in leek crops when late instars tunnel into the lower portion of the plant, which often renders the crop unmarketable. With limited management tools that are cost-effective and practical, especially for leeks produced in organic systems, we examined the attractiveness of other Allium crop species that might be considered in a trap cropping strategy. In 2021 and 2022, controlled environment choice tests and field trials were conducted to evaluate host preference of P. gymnostoma among Allium crop species including chives, scallion, an onion and scallion hybrid, and leek. We also assessed preference of P. gymnostoma for scallions that varied in size/age. Results from field trials indicated that only chives had more oviposition marks, cumulative numbers of eggs, and a higher density of P. gymnostoma larvae and pupae than leeks. Larger/older scallions had more oviposition marks and higher P. gymnostoma densities than smaller ones in controlled environment choice tests, but this size/age preference was not evident in field trials. Based on our findings, chives could be considered as a potential trap crop for minimizing P. gymnostoma damage in leek crops.

9.
Insects ; 14(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37504629

ABSTRACT

Onion maggot (Delia antiqua) is a prominent pest of allium crops in temperate zones worldwide. Management of this pest relies on prophylactic insecticide applications at planting that target the first generation. Because effective options are limited, growers are interested in novel tactics such as deployment of entomopathogenic nematodes. We surveyed muck soils where onions are typically grown to determine if entomopathogenic nematode species were present, and then evaluated the compatibility of entomopathogenic nematode species with the insecticides commonly used to manage D. antiqua. We also evaluated the efficacy of these entomopathogenic nematodes for reducing D. antiqua infestations in the field. No endemic entomopathogenic nematodes were detected in surveys of muck fields in New York. Compatibility assays indicated that, although insecticides such as spinosad and, to some extent, cyromazine did cause mortality of entomopathogenic nematodes, these insecticides did not affect infectivity of the entomopathogenic nematodes. Field trials indicated that applications of entomopathogenic nematodes can reduce the percentage of onion plants killed by D. antiqua from 6% to 30%. Entomopathogenic nematodes reduced D. antiqua damage and increased end of season yield over two field seasons. Applications of entomopathogenic nematodes may be a viable option for reducing D. antiqua populations in conventional and organic systems. Together with other management tactics, like insecticide seed treatments, applications of entomopathogenic nematodes can provide a yield boost and a commercially acceptable level of D. antiqua control.

10.
Insects ; 14(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504584

ABSTRACT

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.

11.
J Econ Entomol ; 105(2): 632-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22606836

ABSTRACT

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is a worldwide pest of onion, Allium cepa L. In field studies on onion resistance conducted in 2007 and 2008 using 49 cultivars, 11 showed low leaf damage by T. tabaci. In laboratory studies, the 11 cultivars, along with two susceptible checks and four additional cultivars, were evaluated to characterize resistance to T. tabaci and to determine if color and/or light reflectance were associated with resistance to T tabaci. No-choice tests were performed with adults and the numbers of eggs and larvae were counted on each cultivar after three and 10 d, respectively. In choice tests in which all cultivars were planted together in a circle in a single pot, 100 adults were released and the number of adults on each plant was evaluated 24 h later. The behavioral response of walking T. tabaci adults to plant odors was studied in a glass Y-tube olfactometer. The reflectance spectrum of leaves was measured using a UV-VIS spectrophotometer. Results indicate that resistant cultivars showed an intermediate-high antibiotic effect to T. tabaci and all of them showed a very strong antixenotic effect. There were no significant preferences in the response of walking T. tabaci adults to plant odors. The two susceptible cultivars had the highest values of leaf reflectance for the first (275-375 nm) and second (310-410 nm) theoretical photopigment-system of T. tabaci, and these values were significantly different from most resistant cultivars. These results suggest a strong response of T. tabaci to onion cultivars with higher reflectance in the ultraviolet range (270-400 nm). Overall, these results appear promising in helping to identify categories of resistance to T. tabaci in onions that can be used in breeding programs.


Subject(s)
Antibiosis , Onions/physiology , Thysanoptera/physiology , Animals , Color , Feeding Behavior , Larva/growth & development , Larva/physiology , Odorants , Onions/genetics , Oviposition , Plant Leaves , Spectrophotometry , Thysanoptera/growth & development
12.
J Econ Entomol ; 115(2): 618-623, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35166346

ABSTRACT

Allium leafminer, Phytomyza gymnostoma Loew (Diptera: Agromyzidae), is an invasive pest of allium crops in North America. Spinosyn insecticides, spinetoram and spinosad, have been effective choices for managing P. gymnostoma infestations in allium crops, but their use should be optimized for economical and resistance management purposes. In New York from 2018 through 2020, performance of each spinosyn insecticide was evaluated by making two applications spaced either 1 or 2 wk apart beginning at various intervals after P. gymnostoma was first detected in the field; a weekly spray program also was included. Results indicated that weekly applications of each spinosyn insecticide provided ≥98% reduction of P. gymnostoma densities in scallions and leeks relative to the untreated control. Spinetoram applied twice, regardless of initial timing and duration between sprays, provided an acceptable level of P. gynostoma control (71 to 98% reduction in densities relative to the untreated control). Spinosad also was effective when applied twice (85 to 95% reduction in densities relative to the untreated control), but not when sprays were made consecutively beginning when P. gymnostoma was first detected and not when the P. gymnostoma infestation was extremely high (i.e., 38 insects per plant in the untreated control). Management of P. gymnostoma with spinosyns can be successful with only two applications, but control tended to be best when first applied 2 to 3 wk after initial detection. Optimizing applications of spinetoram and spinosad will save growers time, reduce insecticide costs, and mitigate resistance development without significantly increasing the risk of yield reduction.


Subject(s)
Allium , Diptera , Insecticides , Animals , Crops, Agricultural , Drug Combinations , Insecta , Insecticide Resistance , Macrolides
13.
Plant Dis ; 95(6): 735-743, 2011 Jun.
Article in English | MEDLINE | ID: mdl-30731932

ABSTRACT

Iris yellow spot virus (IYSV) has been found consistently in commercial dry bulb onion fields throughout New York State since 2006. Yearly recurrence of IYSV may result from annual reintroductions of the virus or persistence of the virus in overwintering host plants. To identify potential sources of IYSV, we surveyed onion transplants imported into New York as well as volunteer onion plants and weeds using a double-antibody sandwich enzyme-linked immunosorbent assay. IYSV was not found in any of 1,097 transplant samples tested in 2007 but 4 of 760 (0.53%) transplant samples tested positive in 2008. IYSV was found in volunteer onion plants in 3 of 10 (30%) onion fields sampled in 2007, in 4 of 27 (15%) onion fields sampled in 2008, and in 6 of 12 (50%) onion cull piles sampled in 2008. In all, 4 of 17 weed species (i.e., chicory [Cichorium intybus], common burdock [Arctium minus], curly dock [Rumex crispus], and dandelion [Taraxacum officinale]), were confirmed to be infected with IYSV using serological and molecular testing methods. IYSV may be reintroduced annually into New York through imported onion transplants but it also persists in volunteer onion plants and selected weed species.

14.
J Econ Entomol ; 104(4): 1153-61, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21882677

ABSTRACT

Pollination services of pumpkin, Cucurbita pepo L., provided by the European honey bee, Apis mellifera L., were compared with two native bee species, the common eastern bumble bee, Bombus impatiens (Cresson), and Peponapis pruinosa Say, in New York from 2008 to 2010. Performance of each species was determined by comparing single-visit pollen deposition, percentage of visits that contacted the stigma, flower-handling time, fruit and seed set, and fruit weight per number of visits. Fruit yield from small fields (0.6 ha) supplemented with commercial B. impatiens colonies was compared with yield from those not supplemented. A. mellifera spent nearly 2 and 3 times longer foraging on each pistillate flower compared with B. impatiens and P. pruinosa, respectively. A. mellifera also visited pistillate flowers 10-20 times more frequently than B. impatiens and P. pruinosa, respectively. Yet, B. impatiens deposited 3 times more pollen grains per stigma and contacted stigmas significantly more often than either A. mellifera or P. pruinosa. Fruit set and weight from flowers visited four to eight times by B. impatiens were similar to those from open-pollinated flowers, whereas flowers pollinated by A. mellifera and P. pruinosa produced fewer fruit and smaller fruit compared with those from open-pollinated flowers. Fields supplemented with B. impatiens produced significantly more pumpkins per plant than nonsupplemented fields. B. impatiens was a better pollinator of pumpkin than P. pruinosa and should be considered as a promising alternative to A. mellifera for pollinating this crop.


Subject(s)
Bees , Behavior, Animal , Biomass , Cucurbita/growth & development , Pollination , Animals , Fruit/growth & development
15.
J Econ Entomol ; 104(1): 1-13, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404832

ABSTRACT

During the past two decades, onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), has become a global pest of increasing concern in commercial onion (Allium cepa L.), because of its development of resistance to insecticides, ability to transmit plant pathogens, and frequency of producing more generations at high temperatures. T. tabaci feeds directly on leaves, causing blotches and premature senescence as well as distorted and undersized bulbs. T. tabaci can cause yield loss > 50% but can be even more problematic when it transmits Iris yellow spot virus (family Bunyaviridae, genus Tospovirus, IYSV). IYSV was identified in 1981 in Brazil and has spread to many important onion-producing regions of the world, including several U.S. states. IYSV symptoms include straw-colored, dry, tan, spindle- or diamond-shaped lesions on the leaves and scapes of onion plants and can cause yield loss up to 100%. Here, we review the biology and ecology of T. tabaci and discuss current management strategies based on chemical, biological, and cultural control as well as host resistance. Future directions for research in integrated pest management are examined and discussed.


Subject(s)
Insect Control , Insecta/physiology , Onions/parasitology , Animals , Host-Parasite Interactions , Insecta/anatomy & histology , Reproduction , Seasons
16.
J Econ Entomol ; 104(5): 1622-32, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22066192

ABSTRACT

Onion maggot, Delia antiqua (Meigen) (Diptera: Anthomyiidae), is an important pest of onion, Allium cepa L., in northern temperate areas, especially in the Great Lakes region of North America Management of D. antiqua relies on insecticide use at planting, but insecticide resistance can cause control failures that threaten the long-term viability of this strategy. Delaying the time onions are planted was investigated as an alternative management approach for D. antiqua and the ecological and behavioral mechanisms underlying host age and insect relationships were examined in laboratory and field experiments. Delaying onion planting by two to four weeks reduced damage to onions by 35 and 90%, respectively. Onions planted later emerged later and this reduced the period overwintered flies had to oviposit on the plants. Moreover, flies tended to lay few to no eggs on these young, late-planted onions. As anticipated, D. antiqua laid 4-8 times more eggs on older onions than on young onions, and older onions were more resilient to injury caused by D. antiqua neonates compared with younger onions. However, the resiliency to maggot attack lessened as the density of D. antiqua increased from 2 to 10 eggs per plant, which probably explains why greater levels of maggot damage are typically observed in early onion plantings compared with later plantings. Delaying onion planting until mid-May reduced D. antiqua damage without jeopardizing the period required to produce marketable yield, but this cultural tactic must be combined with other management strategies to prevent economic loss.


Subject(s)
Diptera , Insect Control , Onions , Oviposition , Animals , Female , Larva , New York , Population Density , Seasons , Time Factors
17.
Insects ; 12(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804399

ABSTRACT

Onion thrips (Thrips tabaci Lindeman) is a major pest in organic onion production and effective integrated pest management strategies are lacking. Our objective was to evaluate combinations of semi-glossy ("Rossa di Milano" and B5336AxB5351C) and waxy ("Bradley") onion cultivars with reflective mulch, with or without biopesticides (spinosad + neem oil tank mix), to manage T. tabaci in organic onion production. Thrips densities were assessed weekly and bulbs graded and weighed at harvest. Onions sprayed with spinosad + neem oil had fewer T. tabaci (adults: 74% (2019); larvae: 40% (2018), 84% (2019) and produced higher yields (13% (2018), 23% (2019)) than onions that were unsprayed, regardless of mulch type or onion cultivar. "Rossa di Milano" had relatively fewer adult and larval thrips populations compared with "Bradley" (21% (2018), 32% (2019)) and B5336AxB5351C. However, "Rossa di Milano" had the lowest marketable yield in both years. Reflective mulch reduced densities on certain dates in both years compared to white mulch, but the largest and most consistent reduction only occurred in 2019. Reflective mulch had no impact on bulb yield. While spinosad + neem oil reduced thrips numbers and increased yield alone, none of the treatment combinations were effective at suppressing populations of thrips. Future T. tabaci management in organic onions will require optimization of the available effective biopesticides.

18.
J Econ Entomol ; 114(2): 694-701, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33503241

ABSTRACT

Onion maggot, Delia antiqua (Meigen), is a serious pest of onion Allium cepa L. in northern temperate regions. Over the last decade, D. antiqua has been managed principally using a pesticide seed treatment package containing the reduced-risk insecticide spinosad. While spinosad protects onion seedlings from D. antiqua, very little is known regarding how protection occurs. The main objectives of this study were to assess susceptibility of 1- and 2-wk-old larvae to spinosad through two different modes of exposure: ingestion and contact, and to evaluate larval feeding behavior in choice and no-choice tests with onion seedlings grown from treated and untreated seeds. Results showed that spinosad was more than twice as lethal to 1-wk than 2-wk-old larvae when it was ingested, but was equally toxic to both larval ages via contact exposure. In choice assays, larvae preferred feeding on untreated plants; however, without a choice, larvae fed and survived equally well on untreated and treated plants, suggesting that spinosad may have a deterrent effect. In a field study, levels of spinosad within young onion plants and in the soil around roots were monitored in addition to the cumulative number of onion seedlings killed by D. antiqua. Spinosad was detected in the soil and in both aboveground and belowground plant tissue, indicating that spinosad translocates into foliage, but declines in plant tissue and soil as plant mortality from D. antiqua feeding increases. Together, these results provide valuable insight into how spinosad protects onion seedlings and reveal key areas in need of further investigation.


Subject(s)
Diptera , Animals , Drug Combinations , Larva , Macrolides , Onions , Seeds
19.
J Econ Entomol ; 114(5): 2236-2240, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34289041

ABSTRACT

Onion thrips (Thrips tabaci Lindeman) is one of onion's most damaging insect pests and has a history of developing resistance across insecticide classes. The susceptibility of T. tabaci populations to insecticides can be determined using laboratory bioassays. Three types of bioassays have been documented in the literature specifically for use with T. tabaci: vial assay (contact only), feeding assay (ingestion only), and leaf-dip assay (contact + ingestion). The objectives of this study were to 1) compare insecticide susceptibility levels of a T. tabaci population using these three assays and 2) determine which bioassay's results were most similar to those generated from exposing thrips to whole plants treated with insecticide. All experiments were conducted using a colony of T. tabaci known to be susceptible to insecticides and all were evaluated for their susceptibility to spinetoram (Radiant SC). Results indicated that 1) each bioassay generated a unique concentration-mortality relationship and LC50 value (0.01, 0.03 and 1.6 ppm for leaf-dip, vial, and feeding assays, respectively), and 2) all bioassays overestimated the susceptibility of the population relative to the whole-plant assay (LC50 = 5.3 ppm). Attributes of these bioassays are discussed relative to their future use in insecticide resistance monitoring programs for T. tabaci.


Subject(s)
Thysanoptera , Animals , Biological Assay , Macrolides , Onions
20.
Environ Entomol ; 50(2): 433-443, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33377151

ABSTRACT

Slow and consistent nutrient release by organic fertilizers can improve plant nutrient balance and defenses, leading to herbivore avoidance of organically managed crops in favor of conventional crops with weaker defenses. We propose that this relative attraction to conventional plants, coupled with the use of genetically modified, insecticidal crops (Bt), has created an unintentional attract-and-kill system. We sought to determine whether Bt and non-Bt corn Zea mays L. plants grown in soil collected from five paired organic and conventional fields differed in attractiveness to European corn borer [Ostrinia nubilalis (Hübner)] moths, by conducting ovipositional choice and flight tunnel assays. We then examined the mechanisms driving the observed differences in attraction by comparing soil nutrient profiles, soil microbial activity, plant nutrition, and plant volatile profiles. Finally, we assessed whether European corn borer abundance near corn fields differed based on soil management. European corn borer preferred plants grown in conventional soil but did not discriminate between Bt and non-Bt corn. Organic management and more alkaline soil were associated with an increased soil magnesium:potassium ratio, which increased plant magnesium, and were linked to reduced European corn borer oviposition. There was an inconsistent trend for higher European corn borer moth activity near conventional fields. Our results extend the mineral balance hypothesis describing conventional plant preference by showing that it can also improve attraction to plants with genetically inserted toxins. Unintentional attract (to conventional) and (Bt) kill is a plausible scenario for pest declines in response to Bt corn adoption, but this effect may be obscured by variation in other management practices and landscape characteristics.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins , Female , Hemolysin Proteins , Nutrients , Pest Control, Biological , Plants, Genetically Modified , Soil , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL