Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Hum Genomics ; 17(1): 14, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849973

ABSTRACT

The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.


Subject(s)
Brain Diseases , Microcephaly , Animals , Male , Mice , Biopsy , Mitochondria/genetics , Seizures , ATPases Associated with Diverse Cellular Activities/metabolism
2.
Proc Natl Acad Sci U S A ; 117(12): 6651-6662, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152116

ABSTRACT

A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.


Subject(s)
Anhedonia , Depressive Disorder, Major/pathology , Inflammation/etiology , Microglia/pathology , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Receptors, Immunologic/physiology , Animals , Behavior, Animal , Cohort Studies , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/psychology , Female , Gene Expression Profiling , Humans , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Synapses
3.
Hum Genomics ; 15(1): 28, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971976

ABSTRACT

BACKGROUND: Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. RESULTS: We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. This gene is related to Grange syndrome, a recessive rare disease, whose symptoms include stenosis or occlusion of multiple arteries, congenital heart defects, brachydactyly, syndactyly, bone fragility, and learning disabilities. Bioinformatic analyses propose these mutations as the most likely cause of the disease, according to its frequency, in silico predictors, conservation analyses, and effect on the protein product. Additionally, we confirmed one mutation in each parent, supporting a compound heterozygous status in the child. CONCLUSIONS: In general, we think that this finding can contribute to the use of whole genome sequencing as a diagnosis tool of rare diseases, and in particular, it can enhance the set of known mutations associated with different diseases.


Subject(s)
Arterial Occlusive Diseases/genetics , Cell Cycle Proteins/genetics , Heart Defects, Congenital/genetics , Rare Diseases/genetics , Transcription Factors/genetics , Arterial Occlusive Diseases/diagnosis , Arterial Occlusive Diseases/pathology , Arteries/diagnostic imaging , Arteries/pathology , Child , Female , Frameshift Mutation/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/pathology , Homozygote , Humans , Pedigree , Rare Diseases/diagnosis , Rare Diseases/pathology , Whole Genome Sequencing
4.
BMC Pediatr ; 22(1): 545, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100855

ABSTRACT

BACKGROUND: Lissencephaly (LIS) is a cortical malformation, characterized by smooth or nearly smooth cerebral surface and a shortage of gyral and sulcal development, which is caused by deficient neuronal migration during embryogenesis. Neuronal migration involves many gene products, among which is the product of the PAFAH1B1 gene, associated with this disease. LIS is a rare disease, characterized by low population frequency, and with non-specific clinical symptoms such as early epilepsy, developmental delay or cerebral palsy-like motor problems. Given that high-throughput sequencing techniques have been improving diagnosis, we have chosen this technique for addressing this patient. CASE PRESENTATION: We present the case of a seven years old male patient with an undiagnosed rare disease, with non-specific clinical symptoms possibly compatible with lissencephaly. The patient was enrolled in a study that included the sequencing of his whole genome. Sequence data was analyzed following a bioinformatic pipeline. The variants obtained were annotated and then subjected to different filters for prioritization. Also mitochondrial genome was analyzed. A novel candidate frameshift insertion in known PAFAH1B1 gene was found, explaining the index case phenotype. The assessment through in silico tools reported that it causes nonsense mediated mechanisms and that it is damaging with high confidence scores. The insertion causes a change in the reading frame, and produces a premature stop codon, severely affecting the protein function and probably the silencing of one allele. The healthy mother did not carry the mutation, and the unaffected father was not available for analysis. CONCLUSIONS: Through this work we found a novel de novo mutation in LIS1/PAFAH1B1 gene, as a likely cause of a rare disease in a young boy with non-specific clinical symptoms. The mutation found correlates with the phenotype studied since the loss of function in the gene product has already been described in this condition. Since there are no other variants in the PAFAH1B1 gene with low population frequency and due to family history, a de novo disease mechanism is proposed.


Subject(s)
Frameshift Mutation , Lissencephaly , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Humans , Lissencephaly/genetics , Male , Microtubule-Associated Proteins/genetics , Rare Diseases
5.
Retrovirology ; 17(1): 18, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32615986

ABSTRACT

BACKGROUND: Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads. RESULTS: We found a selective upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in PBMC from HIC compared with both ART-suppressed and HIV-negative control groups (P≤ 0.02) and higher MCPIP1 and p21 proteins levels in HIC than in HIV-1 negative subjects. There was a moderate positive correlation (r ≥ 0.57; P ≤ 0.014) between expressions of both transcripts in HIC and in HIC combined with control groups. We found positive correlations between the mRNA level of CDKN1A/p21 with activated CD4+ T cells levels in HIC (r ≥ 0.53; P ≤ 0.017) and between the mRNA levels of both CDKN1A/p21 (r = 0.74; P = 0.005) and ZC3H12A/MCPIP1 (r = 0.58; P = 0.040) with plasmatic levels of sCD14 in EC. Reanalysis of published transcriptomic data confirmed the positive association between ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in CD4+ T cells and monocytes from disparate cohorts of HIC and other HIV-positive control groups. CONCLUSIONS: These data show for the first time the simultaneous upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo and the positive correlation of the expression of these cellular factors in disparate cohorts of HIV-positive individuals. The existence of a common regulatory pathway connecting ZC3H12A/MCPIP1 and CDKN1A/p21 could have a synergistic effect on HIV-1 replication control and pharmacological manipulation of these multifunctional host factors may open novel therapeutic perspectives to prevent HIV-1 replication and disease progression.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , HIV Infections/immunology , HIV-1/physiology , Ribonucleases/metabolism , Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Leukocytes, Mononuclear/metabolism , Monocytes/immunology , Monocytes/metabolism , RNA, Messenger/metabolism , Ribonucleases/genetics , Transcription Factors/genetics , Up-Regulation , Viral Load
6.
Arch Virol ; 165(7): 1527-1540, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32335769

ABSTRACT

During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.


Subject(s)
Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Bayes Theorem , Evolution, Molecular , Genome, Viral , Humans , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza, Human/virology , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Tunisia/epidemiology , Viral Proteins/genetics , Zoonoses/transmission , Zoonoses/virology
7.
BMC Genomics ; 20(1): 219, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30876407

ABSTRACT

BACKGROUND: Cardiac cell fate specification occurs through progressive steps, and its gene expression regulation features are still being defined. There has been an increasing interest in understanding the coordination between transcription and post-transcriptional regulation during the differentiation processes. Here, we took advantage of the polysome profiling technique to isolate and high-throughput sequence ribosome-free and polysome-bound RNAs during cardiomyogenesis. RESULTS: We showed that polysome-bound RNAs exhibit the cardiomyogenic commitment gene expression and that mesoderm-to-cardiac progenitor stages are strongly regulated. Additionally, we compared ribosome-free and polysome-bound RNAs and found that the post-transcriptional regulation vastly contributes to cardiac phenotype determination, including RNA recruitment to and dissociation from ribosomes. Moreover, we found that protein synthesis is decreased in cardiomyocytes compared to human embryonic stem-cells (hESCs), possibly due to the down-regulation of translation-related genes. CONCLUSIONS: Our data provided a powerful tool to investigate genes potentially controlled by post-transcriptional mechanisms during the cardiac differentiation of hESC. This work could prospect fundamental tools to develop new therapy and research approaches.


Subject(s)
Biomarkers/analysis , Cell Differentiation , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Polyribosomes/metabolism , RNA, Messenger/metabolism , Cells, Cultured , High-Throughput Nucleotide Sequencing , Human Embryonic Stem Cells/cytology , Humans , Myocytes, Cardiac/cytology , Organogenesis , Polyribosomes/genetics , RNA, Messenger/genetics
8.
BMC Genomics ; 19(1): 2, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29291727

ABSTRACT

BACKGROUND: Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. RESULTS: We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. CONCLUSIONS: This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this pathogen, evidencing the existence of greater genetic variability among strains than previously contemplated.


Subject(s)
Cattle/microbiology , Genome, Bacterial , Mycobacterium bovis/genetics , Animals , Genomics , Genotype , Mycobacterium bovis/classification , Mycobacterium bovis/isolation & purification , Phylogeny , Uruguay
9.
Am Nat ; 192(4): 518-524, 2018 10.
Article in English | MEDLINE | ID: mdl-30205024

ABSTRACT

One of the most generalized conclusions arising from studies analyzing the ecological variation of energy metabolism in endotherms is the apparent negative correlation between ambient temperature and mass-independent basal metabolic rate (residual BMR). As a consequence, ambient temperature has been considered the most important external factor driving the evolution of residual BMR. It is not clear, however, whether this relationship is size dependent, and artifacts such as the biased sampling of body masses in physiological data sets could cause us to overstate the ubiquity of the relationship. Accordingly, here we used published data on body mass (mb), BMR, and annual mean temperature (Tmean) for 458 mammal species (and/or subspecies) to examine the size dependence of the relationship between temperature and BMR. We found a significant interaction between mb and Tmean as predictors of residual BMR, such that the effect of Tmean on residual BMR decreases as a function of mb. In line with this, the amount of residual variance in BMR explained by Tmean decreased with increasing mb, from 20%-30% at body sizes of less than 100 g to almost 0 at body sizes greater than 1,000 g. These data suggest that our current understanding of the importance of broad-scale variation in ambient temperature as a driver of metabolic evolution in endotherms probably is affected by the large number of small species in both nature and physiological data sets.


Subject(s)
Basal Metabolism/physiology , Body Weight/physiology , Mammals/physiology , Temperature , Animals , Body Temperature Regulation , Energy Metabolism/physiology
10.
Article in English | MEDLINE | ID: mdl-28179141

ABSTRACT

Understanding how evolutionary variation in energetic metabolism arises is central to several theories in animal biology. Basal metabolic rate (BMR) -i.e., the minimum rate of energy necessary to maintain thermal homeostasis in endotherms- is a highly informative measure to increase our understanding, because it is determined under highly standardized conditions. In this study we evaluate the relationship between taxa- and mass-independent (residual) BMR and ten environmental factors for 34 subterranean rodent species. Both conventional and phylogenetically informed analyses indicate that ambient temperature is the major determinant of residual BMR, with both variables inversely correlated. By contrast, other environmental factors that have been shown to affect residual BMR in endotherms, such as habitat productivity and rainfall, were not significant predictors of residual BMR in this group of species. Then, the results for subterranean rodents appear to support a central prediction of the obligatory heat model (OHM), which is a mechanistic model aimed to explain the evolution of residual BMR. Specifically, OHM proposes that during the colonization of colder environments, individuals with greater masses of metabolically expensive tissues (and thus with greater BMR) are favored by natural selection due to the link between greater masses of metabolically expensive tissues and physiological capacities. This way, natural selection should establishes a negative correlation between ambient temperature and both internal organ size and residual BMR.


Subject(s)
Biological Evolution , Energy Metabolism , Models, Biological , Rodentia/physiology , Acclimatization , Altitude , Animal Distribution , Animals , Basal Metabolism , Behavior, Animal , Body Temperature Regulation , Body Weight , Climate , Female , Male , Organ Size , Phylogeny , Rodentia/growth & development , Seasons , Species Specificity , Viscera/growth & development
11.
RNA ; 20(6): 754-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24729469

ABSTRACT

The report that exogenous plant miRNAs are able to cross the mammalian gastrointestinal tract and exert gene-regulation mechanism in mammalian tissues has yielded a lot of controversy, both in the public press and the scientific literature. Despite the initial enthusiasm, reproducibility of these results was recently questioned by several authors. To analyze the causes of this unease, we searched for diet-derived miRNAs in deep-sequencing libraries performed by ourselves and others. We found variable amounts of plant miRNAs in publicly available small RNA-seq data sets of human tissues. In human spermatozoa, exogenous RNAs reached extreme, biologically meaningless levels. On the contrary, plant miRNAs were not detected in our sequencing of human sperm cells, which was performed in the absence of any known sources of plant contamination. We designed an experiment to show that cross-contamination during library preparation is a source of exogenous RNAs. These contamination-derived exogenous sequences even resisted oxidation with sodium periodate. To test the assumption that diet-derived miRNAs were actually contamination-derived, we sought in the literature for previous sequencing reports performed by the same group which reported the initial finding. We analyzed the spectra of plant miRNAs in a small RNA sequencing study performed in amphioxus by this group in 2009 and we found a very strong correlation with the plant miRNAs which they later reported in human sera. Even though contamination with exogenous sequences may be easy to detect, cross-contamination between samples from the same organism can go completely unnoticed, possibly affecting conclusions derived from NGS transcriptomics.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Oryza/genetics , RNA, Plant/metabolism , Animals , Female , Humans , Male
12.
Int J Syst Evol Microbiol ; 66(9): 3468-3476, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27266587

ABSTRACT

During a screening study to determine the presence of species of the genus Campylobacter in reptiles, three putative strains (RC7, RC11 and RC20T) were isolated from different individuals of the western Hermann's tortoise (Testudo hermanni hermanni). Initially, these isolates were characterized as representing Campylobacterfetus subsp. fetus by multiplex PCR and partial 16S rRNA gene sequence analysis. Further whole- genome characterization revealed considerable differences compared to other Campylobacter species. A polyphasic study was then undertaken to determine the exact taxonomic position of the isolates. The three strains were characterized by conventional phenotypic tests and whole genome sequencing. We generated robust phylogenies that showed a distinct clade containing only these strains using the 16S rRNA and atpA genes and a set of 40 universal proteins. Our phylogenetic analysis demonstrates their designation as representing a novel species and this was further confirmed using whole- genome average nucleotide identity within the genus Campylobacter (~80 %). Compared to most Campylobacter species, these strains hydrolysed hippurate, and grew well at 25 °C but not at 42 °C. Phenotypic and genetic analyses demonstrate that the three Campylobacter strains isolated from the western Hermann's tortoise represent a novel species within the genus Campylobacter, for which the name Campylobactergeochelonis sp. nov. is proposed, with RC20T (=DSM 102159T=LMG 29375T) as the type strain.


Subject(s)
Campylobacter/classification , Phylogeny , Turtles/microbiology , Animals , Bacterial Typing Techniques , Base Composition , Campylobacter/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Article in English | MEDLINE | ID: mdl-26435349

ABSTRACT

Several hypotheses have been proposed to explain the evolution of an energetically costly brain in the genus Homo. Some of these hypotheses are based on the correlation between climatic factors and brain size recorded for this genus during the last millions of years. In this study, we propose a complementary climatic hypothesis that is based on the mechanistic connection between temperature, thermoregulation, and size of internal organs in endothermic species. We hypothesized that global cooling during the last 3.2 my may have imposed an increased energy expenditure for thermoregulation, which in the case of hominids could represent a driver for the evolution of an expanded brain, or at least, it could imply the relaxation of a negative selection pressure acting upon this costly organ. To test this idea, here we (1) assess variation in the energetic costs of thermoregulation and brain maintenance for the last 3.2 my, and (2) evaluate the relationship between Earth temperature and brain maintenance cost for the same period, taking into account the effects of body mass and fossil age. We found that: (1) the energetic cost associated with brain enlargement represents an important fraction (between 47.5% and 82.5%) of the increase in energy needed for thermoregulation; (2) fossil age is a better predictor of brain maintenance cost than Earth temperature, suggesting that (at least) another factor correlated with time was more relevant than ambient temperature in brain size evolution; and (3) there is a significant negative correlation between the energetic cost of brain and Earth temperature, even after accounting for the effect of body mass and fossil age. Thus, our results expand the current energetic framework for the study of brain size evolution in our lineage by suggesting that a fall in Earth temperature during the last millions of years may have facilitated brain enlargement.


Subject(s)
Biological Evolution , Body Temperature Regulation/physiology , Brain/anatomy & histology , Hominidae/physiology , Animals , Energy Metabolism , Fossils , Organ Size , Phylogeny , Temperature , Time Factors
14.
BMC Genomics ; 16: 879, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26511223

ABSTRACT

BACKGROUND: Among teleosts, the South American genus Austrolebias (Cyprinodontiformes: Rivulidae) includes 42 taxa of annual fishes divided into five different species groups. It is a monophyletic genus, but morphological and molecular data do not resolve the relationship among intrageneric clades and high rates of substitution have been previously described in some mitochondrial genes. In this work, the complete mitogenome of a species of the genus was determined for the first time. We determined its structure, gene order and evolutionary peculiar features, which will allow us to evaluate the performance of mitochondrial genes in the phylogenetic resolution at different taxonomic levels. RESULTS: Regarding gene content and order, the circular mitogenome of A. charrua (17,271 pb) presents the typical pattern of vertebrate mitogenomes. It contains the full complement of 13 proteins-coding genes, 22 tRNA, 2 rRNA and one non-coding control region. Notably, the tRNA-Cys was only 57 bp in length and lacks the D-loop arm. In three full sibling individuals, heteroplasmatic condition was detected due to a total of 12 variable sites in seven protein-coding genes. Among cyprinodontiforms, the mitogenome of A. charrua exhibits the lowest G+C content (37 %) and GCskew, as well as the highest strand asymmetry with a net difference of T over A at 1st and 3rd codon positions. Considering the 12 coding-genes of the H strand, correspondence analyses of nucleotide composition and codon usage show that A and T at 1st and 3rd codon positions have the highest weight in the first axis, and segregate annual species from the other cyprinodontiforms analyzed. Given the annual life-style, their mitogenomes could be under different selective pressures. All 13 protein-coding genes are under strong purifying selection and we did not find any significant evidence of nucleotide sites showing episodic selection (dN >dS) at annual lineages. When fast evolving third codon positions were removed from alignments, the "supergene" tree recovers our reference species phylogeny as well as the Cytb, ND4L and ND6 genes. Therefore, third codon positions seem to be saturated in the aforementioned coding regions at intergeneric Cyprinodontiformes comparisons. CONCLUSIONS: The complete mitogenome obtained in present work, offers relevant data for further comparative studies on molecular phylogeny and systematics of this taxonomic controversial endemic genus of annual fishes.


Subject(s)
Cyprinodontiformes/genetics , Genome, Mitochondrial/genetics , Animals , Base Composition/genetics , Cyprinodontiformes/physiology , Phylogeny , RNA, Transfer/genetics
15.
Physiol Genomics ; 46(4): 138-47, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24326346

ABSTRACT

The adaptation of the liver to periods of negative energy balance is largely unknown in beef cattle on grazing systems. We evaluated liver transcriptome throughout gestation and early lactation of purebred and crossbred beef cows [Angus, Hereford, and their F1 crossbreeds (CR)], grazing high or low herbage allowances (HA) of native grasslands (4 and 2.5 kg dry matter/kg body wt annual mean; n = 16) using an Agilent 4 × 44k bovine array. A total of 4,661 transcripts were affected by days [272 ≥ 2.5-fold difference, false discovery rate (FDR) ≤ 0.10] and 47 pathways were altered during winter gestation (-165 to -15 days relative to calving), when cows experienced decreased body condition score, decreased insulin, and increased nonesterified fatty acid concentrations. Gluconeogenesis and fatty acid oxidation pathways were upregulated, while cell growth, DNA replication, and transcription pathways were downregulated (FDR ≤ 0.25). We observed only small changes in the liver transcriptome during early lactation (+15 to +60 days). A total of 225 genes were differentially expressed (47 ≥ 2-fold difference, FDR ≤ 0.10) between HA. The majority of those were related to glucose and pyruvate metabolism and were upregulated in high HA, reflecting their better metabolic status. Two genes were upregulated in CR cows, but 148 transcripts (74 ≥ 2-fold change difference, FDR ≤ 0.10) were affected by the HA and cow genotype interaction. The transcriptional changes observed indicated a complex and previously unrecognized, hepatic adaptive program of grazing beef cows in different nutritional environments. Novel target candidate genes, metabolic pathways, and regulatory mechanisms were reported.


Subject(s)
Gene Expression Profiling/veterinary , Gene Expression Regulation/genetics , Lactation/metabolism , Liver/metabolism , Pregnancy/metabolism , Analysis of Variance , Animals , Body Constitution/physiology , Cattle , Fatty Acids/metabolism , Female , Gluconeogenesis/genetics , Gluconeogenesis/physiology , Insulin/blood , Microarray Analysis/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Uruguay
16.
J Cell Sci ; 125(Pt 2): 362-75, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22302990

ABSTRACT

Primary cilia are conserved organelles that play crucial roles as mechano- and chemosensors, as well as transducing signaling cascades. Consequently, ciliary dysfunction results in a broad range of phenotypes: the ciliopathies. Bardet-Biedl syndrome (BBS), a model ciliopathy, is caused by mutations in 16 known genes. However, the biochemical functions of the BBS proteins are not fully understood. Here we show that the BBS7 protein (localized in the centrosomes, basal bodies and cilia) probably has a nuclear role by virtue of the presence of a biologically confirmed nuclear export signal. Consistent with this observation, we show that BBS7 interacts physically with the polycomb group (PcG) member RNF2 and regulate its protein levels, probably through a proteasome-mediated mechanism. In addition, our data supports a similar role for other BBS proteins. Importantly, the interaction with this PcG member is biologically relevant because loss of BBS proteins leads to the aberrant expression of endogenous RNF2 targets in vivo, including several genes that are crucial for development and for cellular and tissue homeostasis. Our data indicate a hitherto unappreciated, direct role for the BBS proteins in transcriptional regulation and potentially expand the mechanistic spectrum that underpins the development of ciliary phenotypes in patients.


Subject(s)
Gene Expression Regulation , Proteins/physiology , Transcription, Genetic , Adaptor Proteins, Signal Transducing , Animals , Cell Nucleus/metabolism , Computer Simulation , Cytoskeletal Proteins , HEK293 Cells , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Nuclear Export Signals , Polycomb Repressive Complex 1/metabolism , Protein Transport , Proteins/metabolism , Zebrafish/genetics
17.
Parasitol Res ; 113(1): 285-304, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24241124

ABSTRACT

The protozoan parasite Trypanosoma cruzi has a complex life cycle characterized by intracellular and extracellular forms alternating between invertebrate and mammals. To cope with these changing environments, T. cruzi undergoes rapid changes in gene expression, which are achieved essentially at the posttranscriptional level. At present, expanding families of small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, T. cruzi lacks canonical small RNA pathways. In a recent work, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by a homogeneous population of tRNA-derived small RNAs (tsRNAs). In T. cruzi epimastigotes submitted to nutrient starvation, tsRNAs colocalized with an argonaute protein distinctive of trypanosomatids (TcPIWI-tryp) and were recruited to particular cytoplasmic granules. Using epifluorescence and electronic microscopy, we observed that tsRNAs and the TcPIWI-tryp protein were recruited mainly to reservosomes and other intracellular vesicles including endosome-like vesicles and vesicular structures resembling the Golgi complex. These data suggested that, in T. cruzi, tsRNA biogenesis is probably part of endocytic/exocytic routes. We also demonstrated that epimastigotes submitted to nutrient starvation shed high levels of vesicles to the extracellular medium, which carry small tRNAs and TcPIWI-tryp proteins as cargo. At least a fraction of extracellular vesicle cargo was transferred between parasites and to mammalian susceptible cells. Our data afford experimental evidence, indicating that extracellular vesicles shed by T. cruzi promote not only life cycle transition of epimastigotes to trypomastigote forms but also infection susceptibility of mammalian cells.


Subject(s)
Cytoplasmic Vesicles/parasitology , Life Cycle Stages/physiology , RNA, Protozoan/metabolism , Trypanosoma cruzi/physiology , Animals , Chlorocebus aethiops , Endosomes/parasitology , Golgi Apparatus/parasitology , Humans , K562 Cells , Microscopy, Electron, Transmission , RNA, Transfer/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/ultrastructure , Vero Cells
18.
Transl Anim Sci ; 8: txae005, 2024.
Article in English | MEDLINE | ID: mdl-38525300

ABSTRACT

Residual feed intake (RFI) has become a widely spread index of feed efficiency. Although most of beef cattle systems in the world are pasture based, RFI evaluation and research is usually performed in confinement conditions. In this context, residual heat production (RHP) estimated as the difference between actual and expected heat production (HP), could allow to identify efficient animals. Thus, the aim of this work was to evaluate the relationship between paternal estimated breeding values (EBV) for RFI and beef heifer efficiency, measured as RHP, as well as its association with heifers' productive and reproductive performance on grazing conditions. Seventy-one 25 ±â€…0.8-mo-old and seventy-four 24 ±â€…0.7-mo-old Hereford heifers were managed as contemporary groups in spring 2019 and 2020, respectively. Heifers were sired by 10 RFI-evaluated bulls and classified into three groups according to the paternal EBV for RFI: five bulls of low RFI (high efficiency, pHE), two bulls of medium RFI (medium efficiency), and three bulls of high RFI (low efficiency, pLE). The experimental period lasted 70 d prior to their first insemination where HP was determined by the heart rate-O2 pulse technique. In addition, reproductive performances during the first and second breeding and calving seasons were recorded. Heifers' RHPs expressed as MJ/d and kJ/kg of body weight (BW)0.75/d were positively correlated with paternal RFI EBVs (P < 0.05; r > 0.60). Moreover, BW and average daily gain (ADG) were greater (P < 0.01) for pHE than pLE heifers while expressed as units of BW0.75/d, neither total HP nor metabolizable energy (ME) intake differed between groups, but pHE heifers had greater retained energy (RE; P < 0.01) and lower RHP (P < 0.05) than pLE ones. Gross energy efficiency (RE/ME intake) was greater (P < 0.001) for pHE than pLE heifers while the HP/ADG and RHP/ADG were reduced (P < 0.05) and feed-to-gain ratio (ADG/DM intake) tended to be greater (P = 0.07) for pHE than pLE heifers. In addition, during the first breeding and calving seasons, small but significant (P < 0.01) differences in reproductive responses between groups suggested an earlier pregnancy in pHE heifers than the pLE group, differences that disappeared during the second breeding and calving seasons. Thus, heifers sired by high-efficiency bulls measured as RFI were more efficient measured as RHP in grazing conditions, without significant differences in reproductive performance.

19.
Front Pediatr ; 12: 1379254, 2024.
Article in English | MEDLINE | ID: mdl-38751748

ABSTRACT

Background: Neuronal Ceroid Lipofuscinosis (NCL) disorders, recognized as the primary cause of childhood dementia globally, constitute a spectrum of genetic abnormalities. CLN8, a subtype within NCL, is characterized by cognitive decline, motor impairment, and visual deterioration. This study focuses on an atypical case with congenital onset and a remarkably slow disease progression. Methods: Whole-genome sequencing at 30× coverage was employed as part of a national genomics program to investigate the genetic underpinnings of rare diseases. This genomic approach aimed to challenge established classifications (vLINCL and EPMR) and explore the presence of a continuous phenotypic spectrum associated with CLN8. Results: The whole-genome sequencing revealed two novel likely pathogenic mutations in the CLN8 gene on chromosome 8p23.3. These mutations were not previously associated with CLN8-related NCL. Contrary to established classifications (vLINCL and EPMR), our findings suggest a continuous phenotypic spectrum associated with CLN8. Pathological subcellular markers further validated the genomic insights. Discussion: The identification of two previously undescribed likely pathogenic CLN8 gene mutations challenges traditional classifications and highlights a more nuanced phenotypic spectrum associated with CLN8. Our findings underscore the significance of genetic modifiers and interactions with unrelated genes in shaping variable phenotypic outcomes. The inclusion of pathological subcellular markers further strengthens the validity of our genomic insights. This research enhances our understanding of CLN8 disorders, emphasizing the need for comprehensive genomic analyses to elucidate the complexity of phenotypic presentations and guide tailored therapeutic strategies. The identification of new likely pathogenic mutations underscores the dynamic nature of CLN8-related NCL and the importance of individualized approaches to patient management.

20.
Sci Rep ; 14(1): 15085, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956222

ABSTRACT

Obesity poses significant challenges, necessitating comprehensive strategies for effective intervention. Bariatric Surgery (BS) has emerged as a crucial therapeutic approach, demonstrating success in weight loss and comorbidity improvement. This study aimed to evaluate the outcomes of BS in a cohort of 48 Uruguayan patients and investigate the interplay between BS and clinical and metabolic features, with a specific focus on FSTL1, an emerging biomarker associated with obesity and inflammation. We quantitatively analyzed BS outcomes and constructed linear models to identify variables impacting BS success. The study revealed the effectiveness of BS in improving metabolic and clinical parameters. Importantly, variables correlating with BS success were identified, with higher pre-surgical FSTL1 levels associated with an increased effect of BS on BMI reduction. FSTL1 levels were measured from patient plasma using an ELISA kit pre-surgery and six months after. This research, despite limitations of a small sample size and limited follow-up time, contributes valuable insights into understanding and predicting the success of BS, highlighting the potential role of FSTL1 as a useful biomarker in obesity.


Subject(s)
Bariatric Surgery , Biomarkers , Follistatin-Related Proteins , Obesity , Humans , Follistatin-Related Proteins/blood , Follistatin-Related Proteins/metabolism , Female , Male , Bariatric Surgery/methods , Adult , Middle Aged , Biomarkers/blood , Obesity/surgery , Obesity/metabolism , Uruguay/epidemiology , Cohort Studies , Weight Loss , Treatment Outcome , Body Mass Index
SELECTION OF CITATIONS
SEARCH DETAIL