Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Publication year range
1.
Malar J ; 23(1): 149, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750583

ABSTRACT

BACKGROUND: Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS: Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS: Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION: The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Senegal/epidemiology , Humans , Adolescent , Adult , Young Adult , Child , Middle Aged , Male , Female , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Child, Preschool , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Prevalence , Aged , Infant , Polymerase Chain Reaction , Plasmodium ovale/genetics , Plasmodium ovale/isolation & purification
2.
Malar J ; 23(1): 68, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443939

ABSTRACT

BACKGROUND: Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS: This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS: Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS: When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.


Subject(s)
Malaria , Superinfection , Humans , Senegal/epidemiology , Incidence , Plasmodium falciparum/genetics
3.
Malar J ; 23(1): 205, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982475

ABSTRACT

BACKGROUND: Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. Pathogen genomic surveillance could be invaluable for monitoring current and emerging parasite drug resistance. METHODS: Data from two decades (2000-2020) of continuous molecular surveillance of P. falciparum parasites from Senegal were retrospectively examined to assess historical changes in malaria drug resistance mutations. Several known drug resistance markers and their surrounding haplotypes were profiled using a combination of single nucleotide polymorphism (SNP) molecular surveillance and whole genome sequence based population genomics. RESULTS: This dataset was used to track temporal changes in drug resistance markers whose timing correspond to historically significant events such as the withdrawal of chloroquine (CQ) and the introduction of sulfadoxine-pyrimethamine (SP) in 2003. Changes in the mutation frequency at Pfcrt K76T and Pfdhps A437G coinciding with the 2014 introduction of seasonal malaria chemoprevention (SMC) in Senegal were observed. In 2014, the frequency of Pfcrt K76T increased while the frequency of Pfdhps A437G declined. Haplotype-based analyses of Pfcrt K76T showed that this rapid increase was due to a recent selective sweep that started after 2014. DISCUSSION (CONCLUSION): The rapid increase in Pfcrt K76T is troubling and could be a sign of emerging amodiaquine (AQ) resistance in Senegal. Emerging AQ resistance may threaten the future clinical efficacy of artesunate-amodiaquine (ASAQ) and AQ-dependent SMC chemoprevention. These results highlight the potential of molecular surveillance for detecting rapid changes in parasite populations and stress the need to monitor the effectiveness of AQ as a partner drug for artemisinin-based combination therapy (ACT) and for chemoprevention.


Subject(s)
Antimalarials , Drug Resistance , Mutation , Plasmodium falciparum , Senegal , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Drug Resistance/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Retrospective Studies , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Haplotypes , Membrane Transport Proteins/genetics
4.
Chemistry ; 29(62): e202301880, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37470713

ABSTRACT

Mn2+ complexes of 2,4-pyridyl-disubstituted bispidine ligands have emerged as more biocompatible alternatives to Gd3+ -based MRI probes. They display relaxivities comparable to that of commercial contrast agents and high kinetic inertness, unprecedented for Mn2+ complexes. The chemical structure, in particular the substituents on the two macrocyclic nitrogens N3 and N7, are decisive for the conformation of the Mn2+ complexes, and this will in turn determine their thermodynamic, kinetic and relaxation properties. We describe the synthesis of four ligands with acetate substituents in positions N3, N7 or both. We evidence that the bispidine conformation is dependent on N3 substitution, with direct impact on the thermodynamic stability, kinetic inertness, hydration state and relaxivity of the Mn2+ complexes. These results unambiguously show that (i) solely a chair-chair conformation allows for favorable inertness and relaxivity, and (ii) in this family such chair-chair conformation is accessible only for ligands without N3-appended carboxylates.

5.
Malar J ; 22(1): 167, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237307

ABSTRACT

BACKGROUND: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/parasitology , Senegal , Drug Resistance/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Plasmodium falciparum , Uganda , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use , High-Throughput Nucleotide Sequencing , Mutation
6.
J Am Chem Soc ; 144(48): 22212-22220, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36445192

ABSTRACT

As an essential metal ion and an efficient relaxation agent, Mn2+ holds a great promise to replace Gd3+ in magnetic resonance imaging (MRI) contrast agent applications, if its stable and inert complexation can be achieved. Toward this goal, four pyridine and one carboxylate pendants have been introduced in coordinating positions on the bispidine platform to yield ligand L3. Thanks to its rigid and preorganized structure and perfect size match for Mn2+, L3 provides remarkably high thermodynamic stability (log KMnL = 19.47), selectivity over the major biological competitor Zn2+ (log(KMnL/KZnL) = 4.4), and kinetic inertness. Solid-state X-ray data show that [MnL3(MeOH)](OTf)2 has an unusual eight-coordinate structure with a coordinated solvent molecule, in contrast to the six-coordinate structure of [ZnL3](OTf), underlining that the coordination cavity is perfectly adapted for Mn2+, while it is too large for Zn2+. In aqueous solution, 17O NMR data evidence one inner sphere water and dissociatively activated water exchange (kex298 = 13.5 × 107 s-1) for MnL3. Its water proton relaxivity (r1 = 4.44 mM-1 s-1 at 25 °C, 20 MHz) is about 30% higher than values for typical monohydrated Mn2+ complexes, which is related to its larger molecular size; its relaxation efficiency is similar to that of clinically used Gd3+-based agents. In vivo MRI experiments realized in control mice at 0.02 mmol/kg injected dose indicate good signal enhancement in the kidneys and fast renal clearance. Taken together, MnL3 is the first chelate that combines such excellent stability, selectivity, inertness and relaxation properties, all of primary importance for MRI use.


Subject(s)
Magnetic Resonance Imaging , Water , Animals , Mice , Thermodynamics
7.
Inorg Chem ; 61(34): 13421-13432, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-35984220

ABSTRACT

Bispidine (3,7-diazabicyclo[3.3.1]nonane) provides a rigid and preorganized scaffold that is particularly interesting for the stable and inert complexation of metal ions, especially for their application in medical imaging. In this study, we present the synthesis of two bispidine ligands with N-methanephosphonate (H4L1) and N-methanecarboxylate (H3L2) substituents as well as the physico-chemical properties of the corresponding Mn2+ and Zn2+ complexes. The two complexes [Mn(L1)]2- and [Mn(L2)]- have relatively moderate thermodynamic stability constants according to potentiometric titration data. However, they both display an exceptional kinetic inertness, as assessed by transmetallation experiments in the presence of 50 equiv excess of Zn2+, showing only ∼40 and 20% of dissociation for [Mn(L1)]2- and [Mn(L2)]-, respectively, after 150 days at pH 6 and 37 °C. Proton relaxivities amount to r1 = 4.31 mM-1 s-1 ([Mn(L1)]2-) and 3.64 mM-1 s-1 ([Mn(L2)]-) at 20 MHz, 25 °C, and are remarkable for Mn2+ complexes with one inner-sphere water molecule (q = 1); they are comparable to that of the commercial contrast agent [Gd(DOTA)(H2O)]-. The presence of one inner-sphere water molecule and an associative water exchange mechanism was confirmed by temperature-dependent transverse 17O relaxation rate measurements, which yielded kex298 = 0.12 × 107 and 5.5 × 107 s-1 for the water exchange rate of the phosphonate and the carboxylate complex, respectively. In addition, radiolabeling experiments with 52Mn were also performed with H2(L1)2- showing excellent radiolabeling properties and quantitative complexation at pH 7 in 15 min at room temperature as well as excellent stability of the complex in various biological media over 24 h.


Subject(s)
Organophosphonates , Bridged Bicyclo Compounds, Heterocyclic , Diagnostic Imaging , Ligands , Water
8.
Angew Chem Int Ed Engl ; 61(10): e202115580, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34979049

ABSTRACT

While MnII complexes meet increasing interest in biomedical applications, ligands are lacking that enable high MnII complex stability and selectivity vs. ZnII , the most relevant biological competitor. We report here two new bispidine derivatives, which provide rigid and large coordination cavities that perfectly match the size of MnII , yielding eight-coordinate MnII complexes with record stabilities. In contrast, the smaller ZnII ion cannot accommodate all ligand donors, resulting in highly strained and less stable six-coordinate complexes. Combined theoretical and experimental data (X-ray crystallography, potentiometry, relaxometry and 1 H NMR spectroscopy) demonstrate unprecedented selectivity for MnII vs. ZnII (KMnL /KZnL of 108 -1010 ), in sharp contrast to the usual Irving-Williams behavior, and record MnII complex stabilities and inertness with logKMnL close to 25.

9.
Malar J ; 20(1): 38, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33436004

ABSTRACT

BACKGROUND: Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. METHODS: Parasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR. RESULTS: The most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants. CONCLUSION: The unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Malaria, Falciparum/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Male , Middle Aged , Nigeria/epidemiology , Senegal/epidemiology , Young Adult
10.
Malar J ; 20(1): 218, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980241

ABSTRACT

BACKGROUND: Malaria control and elimination strategies are based on levels of transmission that are usually determined by data collected from health facilities. In endemic areas, asymptomatic Plasmodium infection is thought to represent the majority of infections, though they are not diagnosed nor treated. Therefore, there might be an underestimation of the malaria reservoir, resulting in inadequate control strategies. In addition, these untreated asymptomatic Plasmodium infections maintain transmission, making it difficult or impossible to reach malaria elimination goals. Thus, the aim of this study was to determine the prevalence of asymptomatic Plasmodium infections in southeastern Senegal. METHODS: A cross sectional study was conducted among asymptomatic individuals (N = 122) living in the village of Andiel located in Bandafassi, Kédougou, which consisted of about 200 inhabitants during the malaria transmission season in late October 2019. For each individual without malaria-related symptoms and who consented to participate, a rapid diagnostic test (RDT) was performed in the field. Results were confirmed in the laboratory with photo-induced electron transfer (PET-PCR). RESULTS: Malaria prevalence was 70.3% by PET-PCR and 41.8% by RDT. During the same period, the health post of the area reported 49. 1% test positivity rate by RDT. The majority of the infected study population, 92.9%, was infected with a single species and 7.1% had two or three species of Plasmodium. Plasmodium falciparum was predominant and represented 90.2% of the infections, while 6.5% were due to Plasmodium ovale and 3.3% to Plasmodium malariae. 59.4% of children targeted for SMC (zero to ten years old) were infected. CONCLUSION: In southeastern Senegal, where the transmission is the highest, malaria control strategies should address asymptomatic Plasmodium infections at the community level. The results suggest that this area could be eligible for mass drug administration. Moreover, non-falciparum species could be more common and its prevalence should be determined countrywide.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Malaria/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Plasmodium malariae/isolation & purification , Plasmodium ovale/isolation & purification , Plasmodium vivax/isolation & purification , Prevalence , Senegal/epidemiology , Young Adult
11.
Malar J ; 20(1): 103, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608006

ABSTRACT

BACKGROUND: The diagnosis of malaria cases in regions where the malaria burden has decreased significantly and prevalence is very low is more challenging, in part because of reduced clinical presumption of malaria. The appearance of a cluster of malaria cases with atypical symptoms in Mbounguiel, a village in northern Senegal where malaria transmission is low, in September 2018 exemplifies this scenario. The collaboration between the National Malaria Control Programme (NMCP) at the Senegal Ministry of Health and the Laboratory of Parasitology and Mycology at Cheikh Anta Diop University worked together to evaluate this cluster of malaria cases using molecular and serological tools. METHODS: Malaria cases were diagnosed primarily by rapid diagnostic test (RDT), and confirmed by photo-induced electron transfer-polymerase chain reaction (PET-PCR). 24 single nucleotide polymorphisms (SNPs) barcoding was used for Plasmodium falciparum genotyping. Unbiased metagenomic sequencing and Luminex-based multi-pathogen antibody and antigen profiling were used to assess exposure to other pathogens. RESULTS: Nine patients, of 15 suspected cases, were evaluated, and all nine samples were found to be positive for P. falciparum only. The 24 SNPs molecular barcode showed the predominance of polygenomic infections, with identifiable strains being different from one another. All patients tested positive for the P. falciparum antigens. No other pathogenic infection was detected by either the serological panel or metagenomic sequencing. CONCLUSIONS: This work, undertaken locally within Senegal as a collaboration between the NMCP and a research laboratory at University of Cheikh Anta Diop (UCAD) revealed that a cluster of malaria cases were caused by different strains of P. falciparum. The public health response in real time demonstrates the value of local molecular and genomics capacity in affected countries for disease control and elimination.


Subject(s)
Genome, Protozoan , Malaria, Falciparum/classification , Plasmodium falciparum/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Male , Senegal , Young Adult
12.
Mycoses ; 64(9): 1132-1136, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34076914

ABSTRACT

BACKGROUND: In developing countries, superficial fungal infections (SFI) are endemic and cause a therapeutic problem because of the duration and cost of treatment. Community living and promiscuity are key factors in the direct or indirect transmission and spread of these diseases. OBJECTIVES: The objective was to study the epidemiological aspects of SFI, among koranic school children in two localities in Senegal. PATIENTS/METHODS: School koranic students were recruited in Thies and Touba. Diagnosis of fungal diseases was carried out using conventional techniques (microscopic examination and culture). RESULTS: Among 210 children, the overall prevalence of SFI was 25.71%, with 27.63% in Touba and 20.68% in Thiès. The clinical lesions were epidermophytosis (0.5%), intertrigo (0.9%), palmoplantar keratoderma (KPP) (0.9%), onychomycosis (7.7%) and tinea capitis (TC) (90%). The species responsible for the SFI were Trichophyton soudanense (85.18%), Microsporum audouinii langeronii (9.25%), Trichophyton rubrum (3.70%) and Chrysosporium keratinophilum (1.85%). The prevalence of infection was higher among boys (85.18%). CONCLUSION: Superficial fungal infections are prevalent in koranic school children and attention should be given to non-dermatophytic species that could be responsible for SFI.


Subject(s)
Dermatomycoses , Tinea Capitis , Child , Chrysosporium , Dermatomycoses/epidemiology , Female , Humans , Male , Microsporum , Prevalence , Schools , Senegal/epidemiology , Tinea Capitis/epidemiology , Trichophyton
13.
Malar J ; 19(1): 229, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32590997

ABSTRACT

BACKGROUND: Malaria in sub-Saharan Africa (sSA) is thought to be mostly caused by Plasmodium falciparum. Recently, growing reports of cases due to Plasmodium ovale, Plasmodium malariae, and Plasmodium vivax have been increasingly observed to play a role in malaria epidemiology in sSA. This in fact is due to the usage of very sensitive diagnostic tools (e.g. PCR), which have highlighted the underestimation of non-falciparum malaria in this sub-region. Plasmodium vivax was historically thought to be absent in sSA due to the high prevalence of the Duffy negativity in individuals residing in this sub-continent. Recent studies reporting detection of vivax malaria in Duffy-negative individuals from Mali, Mauritania, Cameroon challenge this notion. METHODS: Following previous report of P. vivax in Duffy-negative individuals in Nigeria, samples were further collected and assessed RDT and/or microscopy. Thereafter, malaria positive samples were subjected to conventional PCR method and DNA sequencing to confirm both single/mixed infections as well as the Duffy status of the individuals. RESULTS: Amplification of Plasmodium gDNA was successful in 59.9% (145/242) of the evaluated isolates and as expected P. falciparum was the most predominant (91.7%) species identified. Interestingly, four P. vivax isolates were identified either as single (3) or mixed (one P. falciparum/P. vivax) infection. Sequencing results confirmed all vivax isolates as truly vivax malaria and the patient were of Duffy-negative genotype. CONCLUSION: Identification of additional vivax isolates among Duffy-negative individuals from Nigeria, substantiate the expanding body of evidence on the ability of P. vivax to infect RBCs that do not express the DARC gene. Hence, such genetic-epidemiological study should be conducted at the country level in order to evaluate the true burden of P. vivax in Nigeria.


Subject(s)
Duffy Blood-Group System/immunology , Malaria, Vivax/blood , Plasmodium vivax/physiology , Receptors, Cell Surface/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Malaria, Vivax/parasitology , Male , Middle Aged , Nigeria , Young Adult
14.
Malar J ; 19(1): 403, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33172455

ABSTRACT

BACKGROUND: Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS: Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS: A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION: This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.


Subject(s)
Antigens, Protozoan/genetics , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Molecular Epidemiology , Senegal , Young Adult
15.
Malar J ; 19(1): 33, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31964378

ABSTRACT

BACKGROUND: Because clustering of Plasmodium falciparum infection had been noted previously, the clustering of infection was examined at four field sites in West Africa: Dangassa and Dioro in Mali, Gambissara in The Gambia and Madina Fall in Senegal. METHODS: Clustering of infection was defined by the percent of persons with positive slides for asexual P. falciparum sleeping in a house which had been geopositioned. Data from each site were then tested for spatial, temporal and spatio-temporal clustering in relation to the prevalence of infection from smear surveys. RESULTS: These studies suggest that clustering of P. falciparum infection also affects the effectiveness of control interventions. For example, the clustering of infection in Madina Fall disappeared in 2014-2016 after vector control eliminated the only breeding site in 2013. In contrast, the temporal clustering of infection in Dioro (rainy season of 2014, dry season of 2015) was consistent with the loss of funding for Dioro in the second quarter of 2014 and disappeared when funds again became available in late 2015. The clustering of infection in rural (western) areas of Gambissara was consistent with known rural-urban differences in the prevalence of infection and with the thatched roofs, open eaves and mud walls of houses in rural Gambissara. In contrast, the most intense transmission was in Dangassa, where the only encouraging observation was a lower prevalence of infection in the dry season. Taken together, these results suggest: (a) the transmission of infection was stopped in Madina Fall by eliminating the only known breeding site, (b) the prevalence of infection was reduced in Dioro after financial support became available again for malaria control in the second half of 2015, (c) improvements in housing should improve malaria control by reducing the number of vectors in rural communities such as western Gambissara, and (d) beginning malaria control during the dry season may reduce transmission in hyperendemic areas such as Dangassa. CONCLUSIONS: From a conceptual perspective, testing for spatial, temporal and spatio-temporal clustering based on epidemiologic data permits the generation of hypotheses for the clustering observed and the testing of candidate interventions to confirm or refute those hypotheses.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Cluster Analysis , Family Characteristics , Gambia/epidemiology , Geographic Information Systems , Housing/standards , Humans , Mali/epidemiology , Prevalence , Rural Population , Seasons , Senegal/epidemiology , Spatial Analysis , Time Factors , Urban Population
16.
Malar J ; 19(1): 15, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31931834

ABSTRACT

BACKGROUND: Northern Senegal is a zone of very low malaria transmission, with an annual incidence of < 5/1000 inhabitants. This area, where the Senegal National Malaria Control Programme has initiated elimination activities, hosts Fulani, nomadic, pastoralists that spend the dry season in the south where malaria incidence is higher (150-450/1000 inhabitants) and return to the north with the first rains. Previous research demonstrated parasite prevalence of < 1% in this Fulani population upon return from the south, similar to that documented in the north in cross-sectional surveys. METHODS: A modified snowball sampling survey of nomadic pastoralists was conducted in five districts in northern Senegal during September and October 2014. Demographic information and dried blood spots were collected. Multiplex bead-based assays were used to assess antibody responses to merozoite surface protein (MSP-119) antigen of the four primary Plasmodium species, as well as circumsporozoite protein (CSP) and liver stage antigen (LSA-1) of Plasmodium falciparum. RESULTS: In the five study districts, 1472 individuals were enrolled, with a median age of 22 years (range 1 to 80 years). Thirty-two percent of subjects were under 14 years and 57% were male. The overall seroprevalence of P. falciparum MSP-119, CSP and LSA-1 antibodies were 45, 12 and 5%, respectively. Plasmodium falciparum MSP-119 antibody responses increased significantly with age in all study areas, and were significantly higher among males. The highest seroprevalence to P. falciparum antigens was observed in the Kanel district (63%) and the lowest observed in Podor (28%). Low seroprevalence was observed for non-falciparum species in all the study sites: 0.4, 0.7 and 1.8%, respectively, for Plasmodium ovale, Plasmodium vivax and Plasmodium malariae MSP-1. Antibody responses to P. vivax were observed in all study sites except Kanel. CONCLUSION: Prevalence of P. falciparum MSP-119 antibodies and increases by study participant age provided data for low levels of exposure among this transient nomadic population. In addition, antibody responses to P. falciparum short half-life markers (CSP and LSA-1) and non-falciparum species were low. Further investigations are needed to understand the exposure of the Fulani population to P. vivax.


Subject(s)
Antibodies, Protozoan/blood , Immunoglobulin G/blood , Malaria, Falciparum/epidemiology , Plasmodium falciparum/immunology , Transients and Migrants , Adolescent , Adult , Aged , Animals , Anopheles/parasitology , Child , Child, Preschool , Female , Humans , Incidence , Infant , Malaria, Falciparum/diagnosis , Malaria, Falciparum/immunology , Male , Microspheres , Middle Aged , Mosquito Vectors/parasitology , Rain , Seasons , Senegal/epidemiology , Seroepidemiologic Studies , Young Adult
17.
Malar J ; 19(1): 276, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746830

ABSTRACT

BACKGROUND: Malaria elimination efforts can be undermined by imported malaria infections. Imported infections are classified based on travel history. METHODS: A genetic strategy was applied to better understand the contribution of imported infections and to test for local transmission in the very low prevalence region of Richard Toll, Senegal. RESULTS: Genetic relatedness analysis, based upon molecular barcode genotyping data derived from diagnostic material, provided evidence for both imported infections and ongoing local transmission in Richard Toll. Evidence for imported malaria included finding that a large proportion of Richard Toll parasites were genetically related to parasites from Thiès, Senegal, a region of moderate transmission with extensive available genotyping data. Evidence for ongoing local transmission included finding parasites of identical genotype that persisted across multiple transmission seasons as well as enrichment of highly related infections within the households of non-travellers compared to travellers. CONCLUSIONS: These data indicate that, while a large number of infections may have been imported, there remains ongoing local malaria transmission in Richard Toll. These proof-of-concept findings underscore the value of genetic data to identify parasite relatedness and patterns of transmission to inform optimal intervention selection and placement.


Subject(s)
Communicable Diseases, Imported/epidemiology , Malaria, Falciparum/epidemiology , Communicable Diseases, Imported/classification , Communicable Diseases, Imported/parasitology , Incidence , Malaria, Falciparum/classification , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Senegal/epidemiology
18.
Malar J ; 19(1): 134, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228566

ABSTRACT

BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS: Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS: In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION: As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , High-Throughput Nucleotide Sequencing , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Senegal
19.
Mycoses ; 63(3): 250-256, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31765040

ABSTRACT

BACKGROUND: Mycetoma is a pathological process in which fungal or actinomycotic agents of exogenous origin produce grains. In the absence of data on the global burden, it is important to map mycetoma cases, which are useful to implement control strategies. OBJECTIVE: The objective of this study was to map mycetoma cases diagnosed in Senegal over a period of eighteen years. METHODOLOGY: The cases of mycetoma identified in the laboratory of Mycology at Aristide Le Dantec Hospital were extracted from the notebooks; information on the dates of collection, geographical origin and fungal agent identified was entered in Excel and analysed. RESULTS: Three hundred and thirty-seven cases of mycetoma were diagnosed from 1993 to 2016 at Aristide Le Dantec Hospital. Mapping shows that overall, the western zone presented the majority of cases 47% (120), followed, respectively, by the central zone 32% (80), the northern zone 18% (47) and the southern zone 2% (6). However, over the years, this distribution is different with a decrease in cases from the periods 1993-2000 and 2011-2016 of 19% in the western and a progressive increase of cases in northern and central zones of, respectively, 13% and 14%. In the 1990s, the cases were predominant in Dakar, Louga and Diourbel. During 2011-2016, Thies, Diourbel, Fouta and Louga presented more cases. CONCLUSION: The spatial distribution of mycetoma in Senegal changed over the years, most frequent in the west of the country, and during 1993 to 2000, mycetoma is now more common in the north.


Subject(s)
Mycetoma/epidemiology , Cities , Climate , Humans , Rain , Retrospective Studies , Senegal/epidemiology , Time Factors
20.
Molecules ; 25(2)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968608

ABSTRACT

The development of efficient and low-cost catalytic systems is important for the replacement of robust noble metal complexes. The synthesis and application of a stable, phosphine-free, water-soluble cyclopentadienone iron tricarbonyl complex in the reduction of polarized double bonds in pure water is reported. In the presence of cationic bifunctional iron complexes, a variety of alcohols and amines were prepared in good yields under mild reaction conditions.


Subject(s)
Cyclopentanes/chemistry , Hydrogen/chemistry , Water/chemistry , Alcohols/chemistry , Amines/chemistry , Coordination Complexes/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL