Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell Mol Life Sci ; 79(8): 423, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838828

ABSTRACT

In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxillin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent particularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.


Subject(s)
Activating Transcription Factor 2 , Antigens, Neoplasm , Colorectal Neoplasms , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Mice , Up-Regulation
2.
ACS Chem Biol ; 18(4): 822-836, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36944371

ABSTRACT

Well-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary. The freely available donated chemical probe (DCP) library, fueled by generous donations of compounds from industry and academia, enables easy access to a steadily growing collection of these valuable and well-characterized tools. Here, we provide a systematic description of the current DCP library collection and their associated comprehensive characterization data, including a variety of in vitro and cellular assays. Of note, we characterized the set in relevant human primary models by employing hepatotoxicity screening in primary human liver spheroids and viability screening in patient-derived colorectal cancer organoids and matched normal-adjacent epithelium. Taken together, the DCP library represents a well-annotated, openly available collection of tool compounds for studying a wide range of targets, including kinases, G-protein-coupled receptors, and ion channels. As such, it represents a unique resource for the biomedical research community.


Subject(s)
Molecular Probes , Neoplasms , Small Molecule Libraries , Humans , Liver , Microphysiological Systems , Neoplasms/metabolism , Organoids/metabolism , Organoids/pathology , Proteins/metabolism , Small Molecule Libraries/classification , Molecular Probes/chemistry , Molecular Probes/pharmacology
3.
Cancer Discov ; 13(10): 2192-2211, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37489084

ABSTRACT

In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo. SIGNIFICANCE: Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Biological Specimen Banks , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Tumor Cells, Cultured , Cancer-Associated Fibroblasts/metabolism , Organoids/pathology , Tumor Microenvironment/genetics
4.
J Cancer Res Clin Oncol ; 145(9): 2227-2240, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31317325

ABSTRACT

PURPOSE: Enhancer of zeste homolog 2 (EZH2) is associated with epigenetic gene silencing and aggressiveness in many tumor types. However, the prognostic impact of high EZH2 expression is controversially discussed for colorectal cancer. For this reason, we immunohistochemically analyzed EZH2 expression in 105 specimens from colon cancer patients separately for tumor center and invasion front. METHODS: All sections from tissue microarrays were evaluated manually and digitally using Definiens Tissue Studio software (TSS). To mirror-image the EZH2 status at the tumor invasion front, we treated HCT116 colon cancer cells with the EZH2 inhibitor 3-Deazaneplanocin A (DZNep) and studied the growth of in ovo xenografts in the chorioallantoic membrane (CAM) assay. RESULTS: We showed a significant decrease in EZH2 expression and the repressive H3K27me3 code at the tumor invasion front as supported by the TSS-constructed heatmaps. Loss of EZH2 at tumor invasion front, but not in tumor center was correlated with unfavorable prognosis and more advanced tumor stages. The observed cell cycle arrest in vitro and in vivo was associated with higher tumor aggressiveness. Xenografts formed by DZNep-treated HCT116 cells showed loosely packed tumor masses, infiltrative growth into the CAM, and high vessel density. CONCLUSION: The differences in EZH2 expression between tumor center and invasion front as well as different scoring and cutoff values can most likely explain controversial literature data concerning the prognostic value of EZH2. Epigenetic therapies using EZH2 inhibitors have to be carefully evaluated for each specific tumor type, since alterations in cell differentiation might lead to unfavorable results.


Subject(s)
Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Margins of Excision , Adenocarcinoma/diagnosis , Adenocarcinoma/surgery , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/metabolism , Chick Embryo , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/surgery , Down-Regulation , Female , HCT116 Cells , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Invasiveness , Prognosis , Retrospective Studies , Tissue Array Analysis
5.
Cell Death Dis ; 10(12): 895, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772156

ABSTRACT

Colorectal cancer (CRC) is one of the leading cancer-related causes of death worldwide. Despite the improvement of surgical and chemotherapeutic treatments, as of yet, the disease has not been overcome due to metastasis to distant organs. Hence, it is of great relevance to understand the mechanisms responsible for metastasis initiation and progression and to identify novel metastatic markers for a higher chance of preventing the metastatic disease. The Death-associated protein kinase 1 (DAPK1), recently, has been shown to be a potential candidate for regulating metastasis in CRC. Hence, the aim of the study was to investigate the impact of DAPK1 protein on CRC aggressiveness. Using CRISPR/Cas9 technology, we generated DAPK1-deficient HCT116 monoclonal cell lines and characterized their knockout phenotype in vitro and in vivo. We show that loss of DAPK1 implemented changes in growth pattern and enhanced tumor budding in vivo in the chorioallantoic membrane (CAM) model. Further, we observed more tumor cell dissemination into chicken embryo organs and increased invasion capacity using rat brain 3D in vitro model. The novel identified DAPK1-loss gene expression signature showed a stroma typical pattern and was associated with a gained ability for remodeling the extracellular matrix. Finally, we suggest the DAPK1-ERK1 signaling axis being involved in metastatic progression of CRC. Our results highlight DAPK1 as an anti-metastatic player in CRC and suggest DAPK1 as a potential predictive biomarker for this cancer type.


Subject(s)
Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Death-Associated Protein Kinases/deficiency , Animals , Antigens, Neoplasm/metabolism , CRISPR-Cas Systems/genetics , Cell Adhesion Molecules/metabolism , Cell Proliferation , Chick Embryo , Chorioallantoic Membrane/metabolism , Clone Cells , Colorectal Neoplasms/genetics , Death-Associated Protein Kinases/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , HCT116 Cells , Humans , MAP Kinase Signaling System , Neoplasm Invasiveness , Neoplasm Metastasis , Rats, Wistar , Reproducibility of Results , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Burden
6.
Cell Death Dis ; 10(6): 379, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097715

ABSTRACT

Cancer stem cells (CSCs) residing in colorectal cancer tissues have tumorigenic capacity and contribute to chemotherapeutic resistance and disease relapse. It is well known that the survival of colorectal CSCs after 5-fluorouracil (5-FU)-based therapy leads to cancer recurrence. Thus CSCs represent a promising drug target. Here, we designed and synthesized novel hybrid molecules linking 5-FU with the plant-derived compound thymoquinone (TQ) and tested the potential of individual compounds and their combination to eliminate colorectal CSCs. Both, Combi and SARB hybrid showed augmented cytotoxicity against colorectal cancer cells, but were non-toxic to organoids prepared from healthy murine small intestine. NanoString analysis revealed a unique signature of deregulated gene expression in response to the combination of TQ and 5-FU (Combi) and SARB treatment. Importantly, two principle stem cell regulatory pathways WNT/ß-Catenin and PI3K/AKT were found to be downregulated after Combi and hybrid treatment. Furthermore, both treatments strikingly eliminated CD133+ CSC population, accompanying the depleted self-renewal capacity by eradicating long-term propagated 3D tumor cell spheres at sub-toxic doses. In vivo xenografts on chicken eggs of SARB-treated HCT116 cells showed a prominent nuclear ß-Catenin and E-cadherin staining. This was in line with the reduced transcriptional activity of ß-Catenin and diminished cell adhesion under SARB exposure. In contrast to 5-FU, both, Combi and SARB treatment effectively reduced the angiogenic capacity of the remaining resistant tumor cells. Taken together, combination or hybridization of single compounds target simultaneously a broader spectrum of oncogenic pathways leading to an effective eradication of colorectal cancer cells.


Subject(s)
Benzoquinones/pharmacology , Colorectal Neoplasms/genetics , Cytotoxins/pharmacology , Fluorouracil/pharmacology , Neoplastic Stem Cells/drug effects , AC133 Antigen/metabolism , Animals , Benzoquinones/chemistry , Cell Adhesion/drug effects , Chick Embryo , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytotoxins/chemistry , Fluorouracil/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Organoids/drug effects , Xenograft Model Antitumor Assays , beta Catenin/metabolism
7.
Cancers (Basel) ; 10(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304835

ABSTRACT

The oncogenic cytoplasmic p21 contributes to cancer aggressiveness and chemotherapeutic failure. However, the molecular mechanisms remain obscure. Here, we show for the first time that cytoplasmic p21 mediates 5-Fluorouracil (5FU) resistance by shuttling p-Chk2 out of the nucleus to protect the tumor cells from its pro-apoptotic functions. We observed that cytoplasmic p21 levels were up-regulated in 5FU-resistant colorectal cancer cells in vitro and the in vivo Chorioallantoic membrane (CAM) model. Kinase array analysis revealed that p-Chk2 is a key target of cytoplasmic p21. Importantly, cytoplasmic form of p21 mediated by p21T145D transfection diminished p-Chk2-mediated activation of E2F1 and apoptosis induction. Co-immunoprecipitation, immunofluorescence, and proximity ligation assay showed that p21 forms a complex with p-Chk2 under 5FU exposure. Using in silico computer modeling, we suggest that the p21/p-Chk2 interaction hindered the nuclear localization signal of p-Chk2, and therefore, the complex is exported out of the nucleus. These findings unravel a novel mechanism regarding an oncogenic role of p21 in regulation of resistance to 5FU-based chemotherapy. We suggest a possible value of cytoplasmic p21 as a prognosis marker and a therapeutic target in colorectal cancer patients.

8.
ChemMedChem ; 12(3): 226-234, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27973725

ABSTRACT

Colorectal cancer causes 0.5 million deaths each year. To combat this type of cancer the development of new specific drug candidates is urgently needed. In the present work seven novel thymoquinone-artemisinin hybrids with different linkers were synthesized and tested for their in vitro anticancer activity against a panel of various tumor cell lines. The thymoquinone-artesunic acid hybrid 7 a, in which both subunits are connected via an ester bond, was found to be the most active compound and selectively decreased the viability of colorectal cancer cells with an IC50 value of 2.4 µm (HCT116) and 2.8 µm (HT29). Remarkably, hybrid 7 a was up to 20-fold more active than its parent compounds (thymoquinone and artesunic acid), while not affecting nonmalignant colon epithelial HCEC cells (IC50 >100 µm). Moreover, the activity of hybrid 7 a was superior to that of various 1:1 mixtures of thymoquinone and artesunic acid. Furthermore, hybrid 7 a was even more potent against both colon cancer cell lines than the clinically used drug 5-fluorouracil. These results are another excellent proof of the hybridization concept and confirm that the type and length of the linker play a crucial role for the biological activity of a hybrid drug. Besides an increase in reactive oxygen species (ROS), elevated levels of the DNA-damage marker γ-H2AX were observed. Both effects seem to be involved in the molecular mechanism of action for hybrid 7 a in colorectal cancer cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Artemisinins/chemistry , Benzoquinones/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , HT29 Cells , Histones/metabolism , Humans , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL