Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781208

ABSTRACT

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Subject(s)
Electron Transport Complex I , Mitochondrial Proteins , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Mice, Knockout , Mitochondria, Muscle/metabolism , Humans , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35135884

ABSTRACT

Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron-sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron-sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT-VDAC1-mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.


Subject(s)
Cytosol/metabolism , Ferrous Compounds/metabolism , Mitochondria/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Animals , Breast Neoplasms , Cell Line, Tumor , Computer Simulation , Extracellular Matrix , Female , Gene Expression Regulation, Neoplastic/physiology , Glycolysis , Humans , Hydrogen-Ion Concentration , Mice , Mice, Nude , Neoplasms, Experimental , Oxygen Consumption , Voltage-Dependent Anion Channel 1/genetics
3.
J Chem Inf Model ; 63(2): 643-654, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36623826

ABSTRACT

Human NEET proteins contain two [2Fe-2S] iron-sulfur clusters, bound to three Cys residues and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers. Unfortunately, the lack of information and mechanistic understanding of ligands binding to the whole functional, cytoplasmatic domain has limited rational drug design approaches. Here, we use an enhanced sampling technique, volume-based metadynamics, recently developed by a team involving some of us, to predict the poses and affinity of the 2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-yl)-thiophene-3-carboxylate ligand to the entire surface of the cytoplasmatic domain of the human NEET protein mitoNEET (mNT) in an aqueous solution. The calculations, based on the recently published X-ray structure of the complex, are consistent with the measured affinity. The calculated free energy landscape revealed that the ligand can bind in multiple sites and with poses other than the one found in the X-ray. This difference is likely to be caused by crystal packing effects that allow the ligand to interact with multiple adjacent NEET protein copies. Such extra contacts are of course absent in the solution; therefore, the X-ray pose is only transient in our calculations, where the binding free energy correlates with the number of contacts. We further evaluated how the reduction and protonation of the Fe-bound histidine, as well as temperature, can affect ligand binding. Both such modifications introduce the possibility for the ligand to bind in an area of the protein other than the one observed in the X-ray, with no or little impact on affinity. Overall, our study can provide insights on the molecular recognition mechanisms of ligand binding to mNT in different oxidative conditions, possibly helping rational drug design of NEET ligands.


Subject(s)
Diabetes Mellitus, Type 2 , Iron-Sulfur Proteins , Neoplasms , Humans , Iron-Sulfur Proteins/chemistry , Ligands , Mitochondrial Proteins/metabolism , Oxidation-Reduction
4.
Phys Chem Chem Phys ; 25(20): 13819-13824, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37184538

ABSTRACT

Structure-based drug design protocols may encounter difficulties to investigate poses when the biomolecular targets do not exhibit typical binding pockets. In this study, by providing two concrete examples from our labs, we suggest that the combination of metadynamics free energy methods (validated against affinity measurements), along with experimental structural information (by X-ray crystallography and NMR), can help to identify the poses of ligands on protein surfaces. The simulation workflow proposed here was implemented in a widely used code, namely GROMACS, and it could straightforwardly be applied to various drug-design campaigns targeting ligands' binding to protein surfaces.


Subject(s)
Drug Design , Membrane Proteins , Computer Simulation , Biophysical Phenomena , Ligands , Protein Binding , Molecular Dynamics Simulation , Binding Sites
5.
J Am Chem Soc ; 144(14): 6311-6320, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35353520

ABSTRACT

Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.


Subject(s)
Metal Nanoparticles , Nanostructures , Catalysis , DNA, Single-Stranded , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry
6.
Small ; 18(52): e2204108, 2022 12.
Article in English | MEDLINE | ID: mdl-36351764

ABSTRACT

The assembly of adenosine triphosphate (ATP)-responsive and miRNA-responsive DNA tetrahedra-functionalized carboxymethyl cellulose hydrogel microcapsules is presented. The microcapsules are loaded with the doxorubicin-dextran drug or with CdSe/ZnS quantum dots as a drug model. Selective unlocking of the respective microcapsules and the release of the loads in the presence of ATP or miRNA-141 are demonstrated. Functionalization of the hydrogel microcapsules a with corona of DNA tetrahedra nanostructures yields microcarriers that revealed superior permeation into cells. This is demonstrated by the effective permeation of the DNA tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to epithelial MCF-10A nonmalignant breast cells. The superior permeation of the tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to analog control hydrogel microcapsules modified with a corona of nucleic acid duplexes. The effective permeation of the stimuli-responsive, drug-loaded, DNA tetrahedra-modified microcapsules yields drug carriers of superior and selective cytotoxicity toward cancer cells.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Hydrogels , Capsules/chemistry , Drug Carriers/chemistry , Adenosine Triphosphate/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , DNA/chemistry , Drug Liberation
7.
J Exp Bot ; 73(1): 324-338, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34499172

ABSTRACT

Iron (Fe) is an essential micronutrient whose uptake is tightly regulated to prevent either deficiency or toxicity. Cadmium (Cd) is a non-essential element that induces both Fe deficiency and toxicity; however, the mechanisms behind these Fe/Cd-induced responses are still elusive. Here we explored Cd- and Fe-associated responses in wild-type Arabidopsis and in a mutant that overaccumulates Fe (opt3-2). Gene expression profiling revealed a large overlap between transcripts induced by Fe deficiency and Cd exposure. Interestingly, the use of opt3-2 allowed us to identify additional gene clusters originally induced by Cd in the wild type but repressed in the opt3-2 background. Based on the high levels of H2O2 found in opt3-2, we propose a model where reactive oxygen species prevent the induction of genes that are induced in the wild type by either Fe deficiency or Cd. Interestingly, a defined cluster of Fe-responsive genes was found to be insensitive to this negative feedback, suggesting that their induction by Cd is more likely to be the result of an impaired Fe sensing. Overall, our data suggest that Fe deficiency responses are governed by multiple inputs and that a hierarchical regulation of Fe homeostasis prevents the induction of specific networks when Fe and H2O2 levels are elevated.


Subject(s)
Arabidopsis Proteins , Cadmium , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cadmium/metabolism , Cadmium/toxicity , Gene Expression Regulation, Plant , Hydrogen Peroxide , Iron/metabolism , Plant Roots/metabolism , Reactive Oxygen Species
8.
EMBO Rep ; 21(12): e49019, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33180995

ABSTRACT

Several human pathologies including neurological, cardiac, infectious, cancerous, and metabolic diseases have been associated with altered mitochondria morphodynamics. Here, we identify a small organic molecule, which we named Mito-C. Mito-C is targeted to mitochondria and rapidly provokes mitochondrial network fragmentation. Biochemical analyses reveal that Mito-C is a member of a new class of heterocyclic compounds that target the NEET protein family, previously reported to regulate mitochondrial iron and ROS homeostasis. One of the NEET proteins, NAF-1, is identified as an important regulator of mitochondria morphodynamics that facilitates recruitment of DRP1 to the ER-mitochondria interface. Consistent with the observation that certain viruses modulate mitochondrial morphogenesis as a necessary part of their replication cycle, Mito-C counteracts dengue virus-induced mitochondrial network hyperfusion and represses viral replication. The newly identified chemical class including Mito-C is of therapeutic relevance for pathologies where altered mitochondria dynamics is part of disease etiology and NEET proteins are highlighted as important therapeutic targets in anti-viral research.


Subject(s)
Mitochondria , Mitochondrial Proteins , Homeostasis , Humans , Iron , Mitochondrial Proteins/genetics
9.
Proc Natl Acad Sci U S A ; 116(40): 19924-19929, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527235

ABSTRACT

MitoNEET is an outer mitochondrial membrane protein essential for sensing and regulation of iron and reactive oxygen species (ROS) homeostasis. It is a key player in multiple human maladies including diabetes, cancer, neurodegeneration, and Parkinson's diseases. In healthy cells, mitoNEET receives its clusters from the mitochondrion and transfers them to acceptor proteins in a process that could be altered by drugs or during illness. Here, we report that mitoNEET regulates the outer-mitochondrial membrane (OMM) protein voltage-dependent anion channel 1 (VDAC1). VDAC1 is a crucial player in the cross talk between the mitochondria and the cytosol. VDAC proteins function to regulate metabolites, ions, ROS, and fatty acid transport, as well as function as a "governator" sentry for the transport of metabolites and ions between the cytosol and the mitochondria. We find that the redox-sensitive [2Fe-2S] cluster protein mitoNEET gates VDAC1 when mitoNEET is oxidized. Addition of the VDAC inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) prevents both mitoNEET binding in vitro and mitoNEET-dependent mitochondrial iron accumulation in situ. We find that the DIDS inhibitor does not alter the redox state of MitoNEET. Taken together, our data indicate that mitoNEET regulates VDAC in a redox-dependent manner in cells, closing the pore and likely disrupting VDAC's flow of metabolites.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Voltage-Dependent Anion Channel 1/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/chemistry , Animals , Apoptosis , Binding Sites , Dimyristoylphosphatidylcholine/chemistry , Ferroptosis , Homeostasis , Humans , Iron/chemistry , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Kinetics , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Oxygen/chemistry , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Sheep
10.
Plant J ; 101(5): 1152-1169, 2020 03.
Article in English | MEDLINE | ID: mdl-31642128

ABSTRACT

Iron-sulfur (Fe-S) clusters play an essential role in plants as protein cofactors mediating diverse electron transfer reactions. Because they can react with oxygen to form reactive oxygen species (ROS) and inflict cellular damage, the biogenesis of Fe-S clusters is highly regulated. A recently discovered group of 2Fe-2S proteins, termed NEET proteins, was proposed to coordinate Fe-S, Fe and ROS homeostasis in mammalian cells. Here we report that disrupting the function of AtNEET, the sole member of the NEET protein family in Arabidopsis thaliana, triggers leaf-associated Fe-S- and Fe-deficiency responses, elevated Fe content in chloroplasts (1.2-1.5-fold), chlorosis, structural damage to chloroplasts and a high seedling mortality rate. Our findings suggest that disrupting AtNEET function disrupts the transfer of 2Fe-2S clusters from the chloroplastic 2Fe-2S biogenesis pathway to different cytosolic and chloroplastic Fe-S proteins, as well as to the cytosolic Fe-S biogenesis system, and that uncoupling this process triggers leaf-associated Fe-S- and Fe-deficiency responses that result in Fe over-accumulation in chloroplasts and enhanced ROS accumulation. We further show that AtNEET transfers its 2Fe-2S clusters to DRE2, a key protein of the cytosolic Fe-S biogenesis system, and propose that the availability of 2Fe-2S clusters in the chloroplast and cytosol is linked to Fe homeostasis in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Iron-Sulfur Proteins/metabolism , Iron/metabolism , Sulfur/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Cytosol/physiology , Electron Transport , Homeostasis , Iron-Sulfur Proteins/genetics , Reactive Oxygen Species/metabolism
11.
J Am Chem Soc ; 143(31): 12120-12128, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34338509

ABSTRACT

Gated dissipative artificial photosynthetic systems modeling dynamically modulated environmental effects on the photosynthetic apparatus are presented. Two photochemical systems composed of a supramolecular duplex scaffold, a photosensitizer-functionalized strand (photosensitizer is Zn(II)protoporphyrin IX, Zn(II)PPIX, or pyrene), an electron acceptor bipyridinium (V2+)-modified strand, and a nicking enzyme (Nt.BbvCI) act as functional assemblies driving transient photosynthetic-like processes. In the presence of a fuel strand, the transient electron transfer quenching of the photosensitizers, in each of the photochemical systems, is activated. In the presence of a sacrificial electron donor (mercaptoethanol) and continuous irradiation, the resulting electron transfer process in the Zn(II)PPIX/V2+ photochemical module leads to the transient accumulation and depletion of the bipyridinium radical-cation (V·+) product, and in the presence of ferredoxin-NADP+ reductase and NADP+, to the kinetically modulated photosynthesis of NADPH. By subjecting the mixture of two photochemical modules to one of two inhibitors, the gated transient photoinduced electron transfer in the two modules is demonstrated. Such gated dissipative process highlights its potential as an important pathway to protect artificial photosynthetic module against overdose of irradiance and to minimize photodamage.


Subject(s)
Ferredoxin-NADP Reductase/metabolism , NADP/metabolism , Photosensitizing Agents/metabolism , Protoporphyrins/metabolism , Pyridinium Compounds/metabolism , Zinc/metabolism , Electron Transport , Ferredoxin-NADP Reductase/chemistry , Light , Molecular Structure , NADP/chemistry , Photosensitizing Agents/chemistry , Protoporphyrins/chemistry , Pyridinium Compounds/chemistry , Zinc/chemistry
12.
Small ; 17(6): e2007355, 2021 02.
Article in English | MEDLINE | ID: mdl-33470517

ABSTRACT

The reversible and switchable triggered reconfiguration of tetrahedra nanostructures from monomer tetrahedra structures into dimer or trimer structures is introduced. The triggered bridging of monomer tetrahedra by K+ -ion-stabilized G-quadruplexes or T-A•T triplexes leads to dimer or trimer tetrahedra structures that are separated by crown ether or basic pH conditions, respectively. The signal-triggered dimerization/trimerization of DNA tetrahedra structures is used to develop multiplexed miRNA-sensing platforms, and the tetrahedra mixture is used for intracellular sensing and imaging of miRNAs.


Subject(s)
G-Quadruplexes , MicroRNAs , Nanostructures , Neoplasms , DNA , Dimerization , Neoplasms/diagnostic imaging
13.
New Phytol ; 230(3): 1034-1048, 2021 05.
Article in English | MEDLINE | ID: mdl-33496342

ABSTRACT

Climate change-driven extreme weather events, combined with increasing temperatures, harsh soil conditions, low water availability and quality, and the introduction of many man-made pollutants, pose a unique challenge to plants. Although our knowledge of the response of plants to each of these individual conditions is vast, we know very little about how a combination of many of these factors, occurring simultaneously, that is multifactorial stress combination, impacts plants. Seedlings of wild-type and different mutants of Arabidopsis thaliana plants were subjected to a multifactorial stress combination of six different stresses, each applied at a low level, and their survival, physiological and molecular responses determined. Our findings reveal that, while each of the different stresses, applied individually, had a negligible effect on plant growth and survival, the accumulated impact of multifactorial stress combination on plants was detrimental. We further show that the response of plants to multifactorial stress combination is unique and that specific pathways and processes play a critical role in the acclimation of plants to multifactorial stress combination. Taken together our findings reveal that further polluting our environment could result in higher complexities of multifactorial stress combinations that in turn could drive a critical decline in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Development , Stress, Physiological
14.
J Biol Inorg Chem ; 26(7): 763-774, 2021 10.
Article in English | MEDLINE | ID: mdl-34453614

ABSTRACT

The NEET proteins constitute a unique class of [2Fe-2S] proteins. The metal ions bind to three cysteines and one histidine. The proteins' clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical calculations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe-NHis and Fe-SCys bonds, similar to what is seen in other Fe-S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra electron in the [2Fe-2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe-2S]+ is released only by an increase in temperature. Thus, the reduced state of human NEET proteins [2Fe-2S] cluster is kinetically inert. This previously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all [2Fe-2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 and G85 in the latter region share similar allosteric characteristics in both redox states.


Subject(s)
Ferric Compounds , Iron-Sulfur Proteins , Ferredoxins/metabolism , Humans , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Oxidation-Reduction
15.
Proc Natl Acad Sci U S A ; 115(2): 272-277, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29259115

ABSTRACT

The NEET family is a relatively new class of three related [2Fe-2S] proteins (CISD1-3), important in human health and disease. While there has been growing interest in the homodimeric gene products of CISD1 (mitoNEET) and CISD2 (NAF-1), the importance of the inner mitochondrial CISD3 protein has only recently been recognized in cancer. The CISD3 gene encodes for a monomeric protein that contains two [2Fe-2S] CDGSH motifs, which we term mitochondrial inner NEET protein (MiNT). It folds with a pseudosymmetrical fold that provides a hydrophobic motif on one side and a relatively hydrophilic surface on the diametrically opposed surface. Interestingly, as shown by molecular dynamics simulation, the protein displays distinct asymmetrical backbone motions, unlike its homodimeric counterparts that face the cytosolic side of the outer mitochondrial membrane/endoplasmic reticulum (ER). However, like its counterparts, our biological studies indicate that knockdown of MiNT leads to increased accumulation of mitochondrial labile iron, as well as increased mitochondrial reactive oxygen production. Taken together, our study suggests that the MiNT protein functions in the same pathway as its homodimeric counterparts (mitoNEET and NAF-1), and could be a key player in this pathway within the mitochondria. As such, it represents a target for anticancer or antidiabetic drug development.


Subject(s)
Iron-Sulfur Proteins/metabolism , Iron/metabolism , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Humans , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Kinetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Dynamics Simulation , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Domains , Protein Folding , RNA Interference
16.
J Am Chem Soc ; 142(9): 4223-4234, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32031792

ABSTRACT

A method to assemble stimuli-responsive nucleic acid-based hydrogel-stabilized microcapsule-in-microcapsule systems is introduced. An inner aqueous compartment stabilized by a stimuli-responsive hydrogel-layer (∼150 nm) provides the inner microcapsule (diameter ∼2.5 µm). The inner microcapsule is separated from an outer aqueous compartment stabilized by an outer stimuli-responsive hydrogel layer (thickness of ∼150 nm) that yields the microcapsule-in-microcapsule system. Different loads, e.g., tetramethyl rhodamine-dextran (TMR-D) and CdSe/ZnS quantum dots (QDs), are loaded in the inner and outer aqueous compartments. The hydrogel layers exist in a higher stiffness state that prevents inter-reservoir or leakage of the loads from the respective aqueous compartments. Subjecting the inner hydrogel layer to Zn2+-ions and/or the outer hydrogel layer to acidic pH or crown ether leads to the triggered separation of the bridging units associated with the respective hydrogel layers. This results in the hydrogel layers of lower stiffness allowing either the mixing of the loads occupying the two aqueous compartments, the guided release of the load from the outer aqueous compartment, or the release of the loads from the two aqueous compartments. In addition, a pH-responsive microcapsule-in-microcapsule system is loaded with glucose oxidase (GOx) in the inner aqueous compartment and insulin in the outer aqueous compartment. Glucose permeates across the two hydrogel layers resulting in the GOx catalyzed aerobic oxidation of glucose to gluconic acid. The acidification of the microcapsule-in-microcapsule system leads to the triggered unlocking of the outer, pH-responsive hydrogel layer and to the release of insulin. The pH-stimulated release of insulin is controlled by the concentration of glucose. While at normal glucose levels, the release of insulin is practically prohibited, the dose-controlled release of insulin in the entire diabetic range  is demonstrated. Also, switchable ON/OFF release of insulin is achieved highlighting an autonomous glucose-responsive microdevice operating as an "artificial pancreas" for the release of insulin.


Subject(s)
Capsules/chemistry , Drug Carriers/chemistry , Hydrogels/chemistry , Pancreas, Artificial , Cadmium Compounds/chemistry , Calcium Carbonate/chemistry , DNA, Catalytic/chemistry , Dextrans/chemistry , Drug Liberation , Fluorescent Dyes/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Insulin/chemistry , Quantum Dots/chemistry , Rhodamines/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
17.
Small ; 16(22): e2000880, 2020 06.
Article in English | MEDLINE | ID: mdl-32374508

ABSTRACT

Microcapsules consisting of hydrogel shells cross-linked by glucosamine-boronate ester complexes and duplex nucleic acids, loaded with dyes or drugs and functionalized with Au nanoparticles (Au NPs) or Au nanorods (Au NRs), are developed. Irradiation of Au NPs or Au NRs results in the thermoplasmonic heating of the microcapsules, and the dissociation of the nucleic acid cross-linkers. The separation of duplex nucleic acid cross-linkers leads to low-stiffness hydrogel shells, allowing the release of loads. Switching off the light-induced plasmonic heating results in the regeneration of stiff hydrogel shells protecting the microcapsules, leading to the blockage of release processes. The thermoplasmonic release of tetramethylrhodamine-dextran, Texas Red-dextran, doxorubicin-dextran (DOX-D), or camptothecin-carboxymethylcellulose (CPT-CMC) from the microcapsules is introduced. By loading the microcapsules with two different drugs (DOX-D and CPT-CMC), the light-controlled dose release is demonstrated. Cellular experiments show efficient permeation of Au NPs/DOX-D or Au NRs/DOX-D microcapsules into MDA-MB-231 cancer cells and inefficient uptake by MCF-10A epithelial breast cells. Cytotoxicity experiments reveal selective thermoplasmon-induced cytotoxicity of the microcapsules toward MDA-MB-231 cancer cells as compared to MCF-10A cells. Also, selective cytotoxicity towards MDA-MB-231 cancer cells upon irradiation of the Au NPs- and Au NRs-functionalized microcapsules at λ = 532 or 910 nm is demonstrated.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nanotubes , Capsules , DNA , Doxorubicin , Gold , Hydrogels
18.
Nano Lett ; 19(12): 9121-9130, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31729224

ABSTRACT

The broadband C3N4 semiconductor absorbs in the UV region, λ = 330-380 nm, a feature limiting its application for light-to-energy conversion. The unique surface adsorption properties of C3N4 allow, however, the binding of a photosensitizer, operating in the visible-solar spectrum to the surface of C3N4. Coupling of the energy levels of the photosensitizer with the energy levels of C3N4 allows effective photoinduced electron-transfer quenching and subsequent charge separation in the hybrid structures. Two methods to adsorb a photosensitizer on the C3N4 nanoparticles are described. One is exemplified by the adsorption of Zn(II)-protoporphyrin IX on C3N4 using π-π interactions. The second method utilizes the specific binding interactions of single-stranded nucleic acids on C3N4 and involves the binding of a Ru(II)-tris-bipyridine-modified nucleic acid on the C3N4 nanoparticles. Effective electron-transfer quenching of the photoexcited photosensitizers by C3N4 proceeds in the two hybrid systems. The two hybrid photosystems induce the effective photosensitized reduction of N,N'-dimethyl-4,4'-bipyridinium, MV2+, to MV+•, in the presence of Na2EDTA as a sacrificial electron donor. The generation of MV+• is ca. 5-fold higher as compared to the formation of MV+• in the presence of the photosensitizer alone (in the absence of C3N4). The effective generation of MV+• in the photosystems is attributed to the efficient quenching of the photosensitizers, followed by effective charge separation of the electrons in the conduction band of C3N4 and the holes in the oxidized photosensitizer. The subsequent transfer of the conduction-band electrons to MV2+ and the oxidation of Na2EDTA by the oxidized photosensitizers lead to the effective formation of MV+•. The photogenerated MV+• by the two hybrid photosystems is used to catalyze H2 evolution in the presence of Pt nanoparticle catalysts and to mediate the reduction of NADP+ to NADPH, in the presence of ferredoxin-NADP+ reductase, FNR. The ability to couple the photogenerated NADPH to drive NADP+-dependent biocatalytic transformations is demonstrated.

19.
Nano Lett ; 19(9): 6621-6628, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31407917

ABSTRACT

Sequence-specific aptamers act as functional scaffolds for the assembly of photosynthetic model systems. The Ru(II)-tris-bipyridine photosensitizer is conjugated by different binding modes to the antityrosinamide aptamer to yield a set of photosensitizer-aptamer binding scaffolds. The N-methyl-N'-(3-aminopropane)-4,4'-bipyridinium electron acceptor, MV2+, is covalently linked to tyrosinamide, TA, to yield the conjugate TA-MV2+. The tyrosinamide unit in TA-MV2+ acts as a ligand for anchoring TA-MV2+ to the Ru(II)-tris-bipyridine-aptamer scaffold, generating the diversity of photosensitizer-aptamer/electron acceptor supramolecular conjugates. Effective electron transfer quenching in the photosynthetic model systems is demonstrated, and the quenching efficiencies are controlled by the structural features of the conjugates. The redox species generated by the photosensitizer-aptamer/electron acceptor supramolecular systems mediate the ferredoxin-NADP+ reductase, FNR, catalyzed synthesis of NADPH, and the Pt-nanoparticle-catalyzed evolution of hydrogen (H2). The novelty of the study rests on the unprecedented use of aptamer scaffolds as functional units for organizing photosynthetic model systems.


Subject(s)
Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Photosensitizing Agents/chemistry , Photosynthesis , Platinum/chemistry , Electron Transport , Ferredoxin-NADP Reductase/chemistry , NADP/chemistry
20.
Angew Chem Int Ed Engl ; 59(23): 9163-9170, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32125762

ABSTRACT

All-DNA scaffolds act as templates for the organization of photosystem I model systems. A series of DNA templates composed of ZnII -protoporphyrin IX (ZnII PPIX)-functionalized G-quadruplex conjugated to the 3'- or 5'-end of the tyrosinamide (TA) aptamer and ZnII PPIX/G-quadruplex linked to the 3'- and 5'-ends of the TA aptamer through a four-thymidine bridge. Effective photoinduced electron transfer (ET) from ZnII PPIX/G-quadruplex to bipyridinium-functionalized tyrosinamide, TA-MV2+ , bound to the TA aptamer units is demonstrated. The effectiveness of the primary ET quenching of ZnII PPIX/G-quadruplex by TA-MV2+ controls the efficiency of the generation of TA-MV+. . The photosystem-controlled formation of TA-MV+. by the different photosystems dictates the secondary activation of the ET cascade corresponding to the ferredoxin-NADP+ reductase (FNR)-catalysed reduction of NADP+ to NADPH by TA-MV+. , and the sequestered alcohol dehydrogenase catalysed reduction of acetophenone to 1-phenylethanol by NADPH.


Subject(s)
Aptamers, Nucleotide/metabolism , DNA/chemistry , DNA/metabolism , G-Quadruplexes , Models, Biological , Photosynthesis , Protoporphyrins/metabolism , Electron Transport
SELECTION OF CITATIONS
SEARCH DETAIL