Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257028

ABSTRACT

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Subject(s)
Energy Metabolism , GABAergic Neurons/metabolism , Adipose Tissue, Brown/metabolism , Animals , Brain Mapping , Clozapine/analogs & derivatives , Clozapine/pharmacology , Dorsal Raphe Nucleus/metabolism , Gene Expression/drug effects , Genetic Vectors/genetics , Genetic Vectors/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Temperature , Thermogenesis
2.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753423

ABSTRACT

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Subject(s)
Appetite Regulation , Dorsal Raphe Nucleus/metabolism , Neurons/metabolism , Animals , Body Weight , Brain/physiology , Dorsal Raphe Nucleus/cytology , Electrophysiology , Fasting , Hunger , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Optogenetics
3.
Cell ; 171(7): 1663-1677.e16, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29224779

ABSTRACT

Social behaviors are crucial to all mammals. Although the prelimbic cortex (PL, part of medial prefrontal cortex) has been implicated in social behavior, it is not clear which neurons are relevant or how they contribute. We found that PL contains anatomically and molecularly distinct subpopulations that target three downstream regions that have been implicated in social behavior: the nucleus accumbens (NAc), amygdala, and ventral tegmental area. Activation of NAc-projecting PL neurons (PL-NAc), but not the other subpopulations, decreased the preference for a social target. To determine what information PL-NAc neurons convey, we selectively recorded from them and found that individual neurons were active during social investigation, but only in specific spatial locations. Spatially specific manipulation of these neurons bidirectionally regulated the formation of a social-spatial association. Thus, the unexpected combination of social and spatial information within the PL-NAc may contribute to social behavior by supporting social-spatial learning.


Subject(s)
Limbic System , Neurons/cytology , Nucleus Accumbens/cytology , Prefrontal Cortex/cytology , Social Behavior , Spatial Behavior , Amygdala/physiology , Animals , Learning , Mice , Neural Pathways , Neurons/physiology , Nucleus Accumbens/physiology , Prefrontal Cortex/physiology , Ventral Tegmental Area/physiology
4.
Cell ; 157(5): 1230-42, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24855954

ABSTRACT

The complexity and cellular heterogeneity of neural circuitry presents a major challenge to understanding the role of discrete neural populations in controlling behavior. While neuroanatomical methods enable high-resolution mapping of neural circuitry, these approaches do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of an approach for molecularly profiling projective neurons. We show that ribosomes can be tagged with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from neurons retrogradely labeled with GFP. Using this system, we profiled neurons projecting to the nucleus accumbens. We then used an AAV to selectively profile midbrain dopamine neurons projecting to the nucleus accumbens. By comparing the captured mRNAs from each experiment, we identified a number of markers specific to VTA dopaminergic projection neurons. The current method provides a means for profiling neurons based on their projections.


Subject(s)
Green Fluorescent Proteins/analysis , Neurobiology/methods , Neuroimaging/methods , Neurons/cytology , Ribosomes/chemistry , Animals , Antibodies/genetics , Green Fluorescent Proteins/metabolism , Immunoprecipitation , Mice, Transgenic , Nucleus Accumbens/cytology , Protein Biosynthesis
5.
Nat Rev Neurosci ; 21(12): 669-681, 2020 12.
Article in English | MEDLINE | ID: mdl-33110222

ABSTRACT

Recombinant viruses are the workhorse of modern neuroscience. Whether one would like to understand a neuron's morphology, natural activity patterns, molecular composition, connectivity or behavioural and physiologic function, most studies begin with the injection of an engineered virus, often an adeno-associated virus or herpes simplex virus, among many other types. Recombinant viruses currently enable some combination of cell type-specific, circuit-selective, activity-dependent and spatiotemporally resolved transgene expression. Viruses are now used routinely to study the molecular and cellular functions of a gene within an identified cell type in the brain, and enable the application of optogenetics, chemogenetics, calcium imaging and related approaches. These advantageous properties of engineered viruses thus enable characterization of neuronal function at unprecedented resolution. However, each virus has specific advantages and disadvantages, which makes viral tool selection paramount for properly designing and executing experiments within the central nervous system. In the current Review, we discuss the key principles and uses of engineered viruses and highlight innovations that are needed moving forward.


Subject(s)
Genetic Engineering , Neurosciences/trends , Viruses/genetics , Animals , Dependovirus/genetics , Genetic Vectors , Humans , Simplexvirus/genetics
6.
Nature ; 531(7596): 647-50, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27007848

ABSTRACT

Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.


Subject(s)
Blood Glucose/metabolism , Eating/physiology , Magnetic Fields , Neurons/physiology , Radio Waves , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/physiology , Animals , Ferritins/genetics , Ferritins/metabolism , Glucagon/blood , Glucokinase/metabolism , Homeostasis , Hypoglycemia/metabolism , Insulin/blood , Integrases/metabolism , Mice , Neural Inhibition , Pancreatic Hormones/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Time Factors
7.
Nature ; 493(7433): 532-6, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23235832

ABSTRACT

Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.


Subject(s)
Depression/physiopathology , Dopaminergic Neurons/metabolism , Mesencephalon/cytology , Social Behavior , Stress, Psychological/physiopathology , Animals , Depression/etiology , Food Preferences , Male , Mice , Neural Pathways , Nucleus Accumbens/physiology , Optogenetics , Phenotype , Prefrontal Cortex/physiology , Stress, Psychological/complications , Sucrose/administration & dosage , Time Factors , Ventral Tegmental Area/physiology
8.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Article in English | MEDLINE | ID: mdl-36411386

ABSTRACT

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Subject(s)
Brain Stem , Leptin , Neurons , Weight Loss , Animals , Humans , Male , Mice , Brain Stem/metabolism , Leptin/metabolism , Mice, Obese , Neurons/metabolism , Obesity/drug therapy , Obesity/metabolism , Orexin Receptors/metabolism
9.
Trends Neurosci ; 44(12): 946-960, 2021 12.
Article in English | MEDLINE | ID: mdl-34663507

ABSTRACT

Energy balance is orchestrated by an extended network of highly interconnected nuclei across the central nervous system. While much is known about the hypothalamic circuits regulating energy homeostasis, the 'extra-hypothalamic' circuits involved are relatively poorly understood. In this review, we focus on the brainstem's dorsal raphe nucleus (DRN), integrating decades of research linking this structure to the physiologic and behavioral responses that maintain proper energy stores. DRN neurons sense and respond to interoceptive and exteroceptive cues related to energy imbalance and in turn induce appropriate alterations in energy intake and expenditure. The DRN is also molecularly differentiable, with different populations playing distinct and often opposing roles in controlling energy balance. These populations are integrated into the extended circuit known to regulate energy balance. Overall, this review summarizes the key evidence demonstrating an important role for the DRN in regulating energy balance.


Subject(s)
Dorsal Raphe Nucleus , Energy Metabolism , Energy Metabolism/physiology , Humans , Hypothalamus/physiology , Neurons/physiology
10.
PLoS One ; 14(3): e0213476, 2019.
Article in English | MEDLINE | ID: mdl-30845266

ABSTRACT

The nucleus accumbens, a key brain reward region, receives synaptic inputs from a range of forebrain and brainstem regions. Many of these projections have been established using electrophysiology or fluorescent tract tracing. However, more recently developed viral tracing techniques have allowed for fluorescent labeling of synaptic afferents in a cell type-specific manner. Since the NAc is comprised of multiple cell types, these methods have enabled the delineation of the cell type-specific connectivity of principal medium spiny neurons in the region. The synaptic connectivity of somatostatin interneurons, which account for <5% of the neurons in the region, has been inferred from electrophysiological and immunohistochemical data, but has not yet been visualized using modern viral tracing techniques. Here, we use the pseudorabies virus (PRV)-Introvert-GFP virus, an alphaherpes virus previously shown to label synaptic afferents in a cell type-specific manner, to label first order afferents to NAc somatostatin interneurons. While we find GFP(+) labeling in several well established projections to the NAc, we also observe that several known projections to NAc did not contain GFP(+) cells, suggesting they do not innervate somatostatin interneurons in the region. A subset of the GFP(+) afferents are c-FOS(+) following acute administration of cocaine, showing that NAc somatostatin interneurons are innervated by some cells that respond to rewarding stimuli. These results provide a foundation for future studies aimed toward elucidating the cell type-specific connectivity of the NAc, and identify specific circuits that warrant future functional characterization.


Subject(s)
Green Fluorescent Proteins/blood , Herpesvirus 1, Suid/metabolism , Interneurons/metabolism , Nucleus Accumbens/metabolism , Somatostatin/metabolism , Staining and Labeling , Animals , Interneurons/cytology , Interneurons/virology , Male , Mice , Nucleus Accumbens/cytology , Nucleus Accumbens/virology
11.
Biol Psychiatry ; 85(3): 226-236, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30336931

ABSTRACT

BACKGROUND: Homeostatic plasticity in mesolimbic dopamine (DA) neurons plays an essential role in mediating resilience to social stress. Recent evidence implicates an association between stress resilience and projections from the locus coeruleus (LC) to the ventral tegmental area (VTA) (LC→VTA) DA system. However, the precise circuitry and molecular mechanisms of the homeostatic plasticity in mesolimbic DA neurons mediated by the LC→VTA circuitry, and its role in conferring resilience to social defeat stress, have not been described. METHODS: In a well-established chronic social defeat stress model of depression, using projection-specific electrophysiological recordings and optogenetic, pharmacological, and molecular profiling techniques, we investigated the functional role and molecular basis of an LC→VTA circuit in conferring resilience to social defeat stress. RESULTS: We found that LC neurons projecting to the VTA exhibit enhanced firing activity in resilient, but not susceptible, mice. Optogenetically mimicking this firing adaptation in susceptible mice reverses their depression-related behaviors, and induces reversal of cellular hyperactivity and homeostatic plasticity in VTA DA neurons projecting to the nucleus accumbens. Circuit-specific molecular profiling studies reveal that α1- and ß3-adrenergic receptors are highly expressed in VTA→nucleus accumbens DA neurons. Pharmacologically activating these receptors induces similar proresilient effects at the ion channel and cellular and behavioral levels, whereas antagonizing these receptors blocks the proresilient effect of optogenetic activation of LC→VTA circuit neurons in susceptible mice. CONCLUSIONS: These findings reveal a key role of the LC→VTA circuit in mediating homeostatic plasticity in stress resilience and reveal α1- and ß3-adrenergic receptors as new molecular targets for therapeutically promoting resilience.


Subject(s)
Locus Coeruleus/physiology , Receptors, Adrenergic, alpha-1/physiology , Receptors, Adrenergic, beta-3/physiology , Resilience, Psychological , Ventral Tegmental Area/physiology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-3 Receptor Antagonists/pharmacology , Animals , Behavior, Animal/physiology , Dopaminergic Neurons/physiology , Homeostasis/physiology , Locus Coeruleus/drug effects , Male , Mice , Neural Pathways/physiology , Neuronal Plasticity/physiology , Resilience, Psychological/drug effects , Stress, Psychological/physiopathology , Ventral Tegmental Area/drug effects
12.
Mol Metab ; 13: 83-89, 2018 07.
Article in English | MEDLINE | ID: mdl-29843980

ABSTRACT

OBJECTIVES: Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. METHODS: MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. RESULTS: We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance. CONCLUSIONS: Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.


Subject(s)
Eating/physiology , Glutamic Acid/metabolism , Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Animals , Body Weight , Excitatory Amino Acid Agents/metabolism , Glucose/metabolism , Glutamic Acid/physiology , Hypothalamic Area, Lateral , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/physiology , Neuropeptides , Neurotransmitter Agents
14.
Cell Rep ; 19(3): 655-667, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423326

ABSTRACT

Translational profiling methodologies enable the systematic characterization of cell types in complex tissues, such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy for profiling CNS cell types in a spatiotemporally restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by translating ribosome affinity purification (TRAP). We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting adeno-associated virus (AAV) injections enabled the elucidation of regional differences in gene expression within this cell type. Altogether, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre.


Subject(s)
Chromatography, Affinity/methods , Protein Biosynthesis , Ribosomes/metabolism , Viruses/metabolism , Animals , Biomarkers/metabolism , Dependovirus/metabolism , Female , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Male , Melanins/metabolism , Mice , Neurons/metabolism , Pituitary Hormones/metabolism , Reproducibility of Results , Serotyping
15.
Nat Protoc ; 10(9): 1319-27, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26247298

ABSTRACT

Retro-TRAP (translating ribosome affinity purification) technology enables the synthesis of molecular and neuroanatomical information through the use of transgenic and viral approaches. In contrast to other methods that are used to profile neural circuits such as laser-capture microdissection and FACS, Retro-TRAP is a high-throughput methodology that requires minimal specialized instrumentation. Retro-TRAP uses an anti-GFP ribosomal tag (expressed virally or using transgenesis) to immunoprecipitate translating mRNAs from any population of neurons that express GFP. The protocol detailed here describes the rapid extraction of molecular information from neural circuits in mice using retrograde-tracing GFP-expressing viruses. This approach can be used to identify novel cell types, as well as to molecularly profile cell types for which Cre-driver lines are available, in defined presynaptic loci. The current protocol describes a method for extracting translating mRNA from any neural circuit accessible by stereotaxic injection and manual dissection, and it takes 2-4 weeks. Although it is not described here, this mRNA can then be used in downstream processing applications such as quantitative PCR (qPCR) and high-throughput RNA sequencing to obtain 'molecular connectomic' information.


Subject(s)
Gene Expression Profiling/methods , Neurons/metabolism , RNA, Messenger/analysis , Animals , Green Fluorescent Proteins , Mice, Transgenic , RNA, Messenger/metabolism
16.
J Biomed Mater Res A ; 102(2): 420-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23520051

ABSTRACT

How do we quantify cellular alignment? Cellular alignment is an important technique used to study and promote tissue regeneration in vitro and in vivo. Indeed, regenerative outcomes are often strongly correlated with the efficacy of alignment, making quantitative, automated assessment an important goal for the field of tissue engineering. There currently exist various classes of algorithms, which effectively address the problem of quantifying individual cellular alignments using Fourier methods, kernel methods, and elliptical approximation; however, these algorithms often yield population distributions and are limited by their inability to yield a scalar metric quantifying the efficacy of alignment. The current work builds on these classes of algorithms by adapting the signal processing methods previously used by our group to study the alignment of cellular processes. We use an automated, ellipse-fitting algorithm to approximate cell body alignment with respect to a silk biomaterial scaffold, followed by the application of the normalized cumulative periodogram criterion to produce a scalar value quantifying alignment. The proposed work offers a generalized method for assessing cellular alignment in complex, two-dimensional environments. This method may also offer a novel alternative for assessing the alignment of cell types with polarity, such as fibroblasts, endothelial cells, and mesenchymal stem cells, as well as nuclei.


Subject(s)
Endothelial Cells/metabolism , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Silk/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Anisotropy , Endothelial Cells/cytology , Fibroblasts/cytology , Mesenchymal Stem Cells/cytology , PC12 Cells , Rats
17.
SIAM J Sci Comput ; 35(3): B623-B643, 2013.
Article in English | MEDLINE | ID: mdl-24058276

ABSTRACT

Several authors have proposed the use of exponential time differencing (ETD) for Hodgkin-Huxley-like partial and ordinary differential equations (PDEs and ODEs). For Hodgkin-Huxley-like PDEs, ETD is attractive because it can deal effectively with the stiffness issues that diffusion gives rise to. However, large neuronal networks are often simulated assuming "space-clamped" neurons, i.e., using the Hodgkin-Huxley ODEs, in which there are no diffusion terms. Our goal is to clarify whether ETD is a good idea even in that case. We present a numerical comparison of first- and second-order ETD with standard explicit time-stepping schemes (Euler's method, the midpoint method, and the classical fourth-order Runge-Kutta method). We find that in the standard schemes, the stable computation of the very rapid rising phase of the action potential often forces time steps of a small fraction of a millisecond. This can result in an expensive calculation yielding greater overall accuracy than needed. Although it is tempting at first to try to address this issue with adaptive or fully implicit time-stepping, we argue that neither is effective here. The main advantage of ETD for Hodgkin-Huxley-like systems of ODEs is that it allows underresolution of the rising phase of the action potential without causing instability, using time steps on the order of one millisecond. When high quantitative accuracy is not necessary and perhaps, because of modeling inaccuracies, not even useful, ETD allows much faster simulations than standard explicit time-stepping schemes. The second-order ETD scheme is found to be substantially more accurate than the first-order one even for large values of Δt.

18.
J Biomed Mater Res A ; 101(3): 884-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23008168

ABSTRACT

Current statistical techniques for analyzing cellular alignment data in the fields of biomaterials and tissue engineering are limited because of heuristic and less quantitative approaches. For example, generally a cutoff degree limit (commonly 20 degrees) is arbitrarily defined within which cells are considered "aligned." The effectiveness of a patterned biomaterial in guiding the alignment of cells, such as neurons, is often critical to predict relationships between the biomaterial design and biological outcomes, both in vitro and in vivo. This becomes particularly important in the case of peripheral neurons, which require precise axon guidance to obtain successful regenerative outcomes. To address this issue, we have developed a protocol for processing cellular alignment data sets, which implicitly determines an "angle of alignment." This was accomplished as follows: cells "aligning" with an underlying, anisotropic scaffold display uniformly distributed angles up to a cutoff point determined by how effective the biomaterial is in aligning cells. Therefore, this fact was then used to determine where an alignment angle data set diverges from a uniform distribution. This was accomplished by measuring the spacing between the collected, increasingly ordered angles and analyzing their underlying distributions using a normalized cumulative periodogram criterion. The proposed protocol offers a novel way to implicitly define cellular alignment, with respect to various anisotropic biomaterials. This method may also offer an alternative to assess cellular alignment, which could offer improved predictive measures related to biological outcomes. Furthermore, the approach described can be used for a broad range of cell types grown on 2D surfaces, but would not be applicable to 3D scaffold systems in the present format.


Subject(s)
Algorithms , Axons/metabolism , Biocompatible Materials/chemistry , Models, Biological , Nerve Regeneration , Tissue Scaffolds/chemistry , Animals , Cell Line, Tumor , Cellular Senescence , Mice
19.
Tissue Eng Part B Rev ; 18(1): 40-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21812591

ABSTRACT

Currently, surgical treatments for peripheral nerve injury are less than satisfactory. The gold standard of treatment for peripheral nerve gaps >5 mm is the autologous nerve graft; however, this treatment is associated with a variety of clinical complications, such as donor site morbidity, limited availability, nerve site mismatch, and the formation of neuromas. Despite many recent advances in the field, clinical studies implementing the use of artificial nerve guides have yielded results that are yet to surpass those of autografts. Thus, the development of a nerve guidance conduit, which could match the effectiveness of the autologous nerve graft, would be beneficial to the field of peripheral nerve surgery. Design strategies to improve surgical outcomes have included the development of biopolymers and synthetic polymers as primary scaffolds with tailored mechanical and physical properties, luminal "fillers" such as laminin and fibronectin as secondary internal scaffolds, surface micropatterning, stem cell inclusion, and controlled release of neurotrophic factors. The current article highlights approaches to peripheral nerve repair through a channel or conduit, implementing chemical and physical growth and guidance cues to direct that repair process.


Subject(s)
Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Nerve Regeneration/drug effects , Peripheral Nerves/drug effects , Tissue Scaffolds/chemistry , Animals , Humans , Nerve Regeneration/physiology , Peripheral Nerves/pathology , Peripheral Nerves/physiology
SELECTION OF CITATIONS
SEARCH DETAIL