Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
N Engl J Med ; 384(3): 205-215, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33283990

ABSTRACT

BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).


Subject(s)
Anemia, Sickle Cell/therapy , Fetal Hemoglobin/biosynthesis , Genetic Therapy , RNA Interference , Repressor Proteins/genetics , gamma-Globins/metabolism , Adolescent , Adult , Anemia, Sickle Cell/genetics , Child , Down-Regulation , Female , Fetal Hemoglobin/genetics , Gene Knockdown Techniques , Genetic Vectors , Humans , Male , Pilot Projects , RNA, Small Interfering , Repressor Proteins/metabolism , Transplantation, Autologous , Young Adult , gamma-Globins/genetics
2.
N Engl J Med ; 378(16): 1479-1493, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29669226

ABSTRACT

BACKGROUND: Donor availability and transplantation-related risks limit the broad use of allogeneic hematopoietic-cell transplantation in patients with transfusion-dependent ß-thalassemia. After previously establishing that lentiviral transfer of a marked ß-globin (ßA-T87Q) gene could substitute for long-term red-cell transfusions in a patient with ß-thalassemia, we wanted to evaluate the safety and efficacy of such gene therapy in patients with transfusion-dependent ß-thalassemia. METHODS: In two phase 1-2 studies, we obtained mobilized autologous CD34+ cells from 22 patients (12 to 35 years of age) with transfusion-dependent ß-thalassemia and transduced the cells ex vivo with LentiGlobin BB305 vector, which encodes adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q). The cells were then reinfused after the patients had undergone myeloablative busulfan conditioning. We subsequently monitored adverse events, vector integration, and levels of replication-competent lentivirus. Efficacy assessments included levels of total hemoglobin and HbAT87Q, transfusion requirements, and average vector copy number. RESULTS: At a median of 26 months (range, 15 to 42) after infusion of the gene-modified cells, all but 1 of the 13 patients who had a non-ß0/ß0 genotype had stopped receiving red-cell transfusions; the levels of HbAT87Q ranged from 3.4 to 10.0 g per deciliter, and the levels of total hemoglobin ranged from 8.2 to 13.7 g per deciliter. Correction of biologic markers of dyserythropoiesis was achieved in evaluated patients with hemoglobin levels near normal ranges. In 9 patients with a ß0/ß0 genotype or two copies of the IVS1-110 mutation, the median annualized transfusion volume was decreased by 73%, and red-cell transfusions were discontinued in 3 patients. Treatment-related adverse events were typical of those associated with autologous stem-cell transplantation. No clonal dominance related to vector integration was observed. CONCLUSIONS: Gene therapy with autologous CD34+ cells transduced with the BB305 vector reduced or eliminated the need for long-term red-cell transfusions in 22 patients with severe ß-thalassemia without serious adverse events related to the drug product. (Funded by Bluebird Bio and others; HGB-204 and HGB-205 ClinicalTrials.gov numbers, NCT01745120 and NCT02151526 .).


Subject(s)
Genetic Therapy , beta-Globins/genetics , beta-Thalassemia/therapy , Adolescent , Adult , Antigens, CD34 , Child , Erythrocyte Transfusion/statistics & numerical data , Female , Gene Transfer Techniques , Genetic Vectors , Hemoglobins/analysis , Hemoglobins/genetics , Humans , Lentivirus/genetics , Male , Mutation , Transplantation, Autologous , Young Adult , beta-Thalassemia/genetics
3.
N Engl J Med ; 376(9): 848-855, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28249145

ABSTRACT

Sickle cell disease results from a homozygous missense mutation in the ß-globin gene that causes polymerization of hemoglobin S. Gene therapy for patients with this disorder is complicated by the complex cellular abnormalities and challenges in achieving effective, persistent inhibition of polymerization of hemoglobin S. We describe our first patient treated with lentiviral vector-mediated addition of an antisickling ß-globin gene into autologous hematopoietic stem cells. Adverse events were consistent with busulfan conditioning. Fifteen months after treatment, the level of therapeutic antisickling ß-globin remained high (approximately 50% of ß-like-globin chains) without recurrence of sickle crises and with correction of the biologic hallmarks of the disease. (Funded by Bluebird Bio and others; HGB-205 ClinicalTrials.gov number, NCT02151526 .).


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy , beta-Globins/genetics , Adolescent , Anemia, Sickle Cell/blood , Clinical Trials as Topic , Gene Expression , Genetic Therapy/adverse effects , Genetic Vectors , Hemoglobin A/metabolism , Humans , Lentivirus , Male
4.
Nature ; 514(7521): 242-6, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25156257

ABSTRACT

ß-Thalassaemia major (ß-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing ß-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human ß-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of ß-TM erythroblasts, which may provide a rationale for new targeted therapies of ß-TM.


Subject(s)
Erythroblasts/metabolism , Erythropoiesis , HSP70 Heat-Shock Proteins/metabolism , alpha-Globins/metabolism , beta-Thalassemia/blood , beta-Thalassemia/metabolism , Apoptosis , Bone Marrow/metabolism , Caspase 3/metabolism , Cell Nucleus/metabolism , Cell Survival/genetics , Cells, Cultured , Cytoplasm/metabolism , Enzyme Activation , Erythroblasts/cytology , Erythroblasts/pathology , Erythropoiesis/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , Humans , Kinetics , Molecular Targeted Therapy , Protein Binding , Protein Refolding , beta-Thalassemia/pathology
5.
Mol Ther ; 26(2): 480-495, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29221807

ABSTRACT

Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase. When expressed from a ubiquitous promoter within a complex lentiviral vector comprising the ßAT87Q-globin gene, viral titers and therapeutic gene expression were maintained at effective levels. Complete selection and preservation of transduced HSCs were achieved after brief exposure to puromycin in the presence of MDR1 blocking agents, suggesting the procedure's suitability for human clinical applications while affording the additional safety of conditional suicide.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Hemoglobinopathies/genetics , Hemoglobinopathies/therapy , Transduction, Genetic , beta-Globins/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Disease Models, Animal , Gene Expression , Gene Order , Genes, Transgenic, Suicide , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Lentivirus/genetics , Mice , Mice, Transgenic , Transgenes
6.
Nature ; 467(7313): 318-22, 2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20844535

ABSTRACT

The ß-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of ß-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound ß(E)/ß(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The ß(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated ß(E)-globin with partial instability. When this is compounded with a non-functional ß(0) allele, a profound decrease in ß-globin synthesis results, and approximately half of ß(E)/ß(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral ß-globin gene transfer, an adult patient with severe ß(E)/ß(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded ß-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.


Subject(s)
Blood Transfusion , Genetic Therapy , HMGA2 Protein/metabolism , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Adolescent , Blood Cells/cytology , Blood Cells/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Child, Preschool , Clone Cells/metabolism , Gene Expression , Genetic Vectors/genetics , HMGA2 Protein/genetics , Homeostasis , Humans , Lentivirus/genetics , Male , MicroRNAs/genetics , Organ Specificity , RNA, Messenger/analysis , RNA, Messenger/genetics , Time Factors , Transcriptional Activation , Young Adult , beta-Thalassemia/metabolism
7.
Stem Cells ; 31(9): 1785-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712774

ABSTRACT

A patient with ß(E)/ß(0) -thalassemia major was converted to transfusion-independence 4.5 years ago by lentiviral gene transfer in hematopoietic stem cells while showing a myeloid-biased cell clone. Induced pluripotent stem cells (iPSCs) are a potential alternative source of hematopoietic stem cells. If fetal to adult globin class, switching does not occur in vivo in iPSC-derived erythroid cells, ß-globin gene transfer would be unnecessary. To investigate both vector integration skewing and the potential use of iPSCs for the treatment of thalassemia, we derived iPSCs from the thalassemia gene therapy patient and compared iPSC-derived hematopoietic cells to their natural isogenic somatic counterparts. In NSG immunodeficient mice, embryonic to fetal and a partial fetal to adult globin class switching were observed, indicating that the gene transfer is likely necessary for iPSC-based therapy of the ß-hemoglobinopathies. Lentivector integration occurred in regions of low and high genotoxicity. Surprisingly, common integration sites (CIS) were identified across those iPSCs and cells retrieved from isogenic and nonisogenic gene therapy patients with ß-thalassemia and adrenoleukodystrophy, respectively. This suggests that CIS observed in the absence of overt tumorigenesis result from nonrandom lentiviral integration rather than oncogenic in vivo selection. These findings bring the use of iPSCs closer to practicality and further clarify our interpretation of genome-wide lentivector integration.


Subject(s)
Globins/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Lentivirus/metabolism , Transduction, Genetic , beta-Thalassemia/pathology , Adult , Animals , Cell Differentiation/drug effects , Erythroid Cells/cytology , Erythroid Cells/drug effects , Erythroid Cells/metabolism , Gene Expression Regulation/drug effects , Genetic Vectors/metabolism , Globins/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Mice , Mutagens/toxicity , Regeneration/drug effects , Virus Integration/drug effects
8.
Blood ; 117(20): 5321-31, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21436071

ABSTRACT

A challenge for gene therapy of genetic diseases is to maintain corrected cell populations in subjects undergoing transplantation in cases in which the corrected cells do not have intrinsic selective advantage over nontransduced cells. For inherited hematopoietic disorders, limitations include inefficient transduction of stem cell pools, the requirement for toxic myelosuppression, and a lack of optimal methods for cell selection after transduction. Here, we have designed a lentiviral vector that encodes human ß-globin and a truncated erythropoietin receptor, both under erythroid-specific transcriptional control. This truncated receptor confers enhanced sensitivity to erythropoietin and a benign course in human carriers. Transplantation of marrow transduced with the vector into syngenic thalassemic mice, which have elevated plasma erythropoietin levels, resulted in long-term correction of the disease even at low ratios of transduced/untransduced cells. Amplification of the red over the white blood cell lineages was self-controlled and averaged ∼ 100-fold instead of ∼ 5-fold for ß-globin expression alone. There was no detectable amplification of white blood cells or alteration of hematopoietic homeostasis. Notwithstanding legitimate safety concerns in the context of randomly integrating vectors, this approach may prove especially valuable in combination with targeted integration or in situ homologous recombination/repair and may lower the required level of pretransplantation myelosuppression.


Subject(s)
Genetic Therapy/methods , beta-Thalassemia/therapy , Animals , Base Sequence , DNA Primers/genetics , Disease Models, Animal , Erythropoiesis/genetics , Gene Expression , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Homeostasis , Humans , Lentivirus/genetics , Mice , Receptors, Erythropoietin/genetics , Recombinant Proteins/genetics , Transplantation, Isogeneic , beta-Globins/genetics , beta-Thalassemia/blood , beta-Thalassemia/genetics
9.
Presse Med ; 52(4): 104214, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000628

ABSTRACT

Gene therapy is an innovative strategy that offers potential cure for patients with sickle cell disease, and no appropriate donor for transplant consideration. While we await long term data from these clinical trials, we remain optimistic that gene therapy will become a standard of care for curative treatment in sickle cell disease. As gene therapy becomes a standard of treatment in sickle cell disease, we must also acknowledge the potential for financial burden to patients. We also must acknowledge the prevalence of sickle cell disease in low-resource settings. Hopefully, as we learn more about gene therapy, we can assess ways to overcome the financial toxicity that comes with this therapy.


Subject(s)
Anemia, Sickle Cell , Hematopoietic Stem Cell Transplantation , Humans , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Genetic Therapy
10.
Mol Ther ; 19(7): 1273-86, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21386821

ABSTRACT

A lentiviral vector encoding ß-globin flanked by insulator elements has been used to treat ß-thalassemia (ß-Thal) successfully in one human subject. However, a clonal expansion was observed after integration in the HMGA2 locus, raising the question of how commonly lentiviral integration would be associated with possible insertional activation. Here, we report correcting ß-Thal in a murine model using the same vector and a busulfan-conditioning regimen, allowing us to investigate efficacy and clonal evolution at 9.2 months after transplantation of bone marrow cells. The five gene-corrected recipient mice showed near normal levels of hemoglobin, reduced accumulation of reticulocytes, and normalization of spleen weights. Mapping of integration sites pretransplantation showed the expected favored integration in transcription units. The numbers of gene-corrected long-term repopulating cells deduced from the numbers of unique integrants indicated oligoclonal reconstitution. Clonal abundance was quantified using a Mu transposon-mediated method, indicating that clones with integration sites near growth-control genes were not enriched during growth. No integration sites involving HMGA2 were detected. Cells containing integration sites in genes became less common after prolonged growth, suggesting negative selection. Thus, ß-Thal gene correction in mice can be achieved without expansion of cells harboring vectors integrated near genes involved in growth control.


Subject(s)
Genetic Vectors/genetics , Lentivirus/genetics , beta-Thalassemia/therapy , Animals , Bone Marrow Transplantation , Chromatography, High Pressure Liquid , Flow Cytometry , HMGA2 Protein/genetics , Mice , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/metabolism
11.
Front Immunol ; 13: 956919, 2022.
Article in English | MEDLINE | ID: mdl-35874778

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adoptive Transfer , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Recurrence , T-Lymphocytes
12.
Nat Med ; 28(1): 81-88, 2022 01.
Article in English | MEDLINE | ID: mdl-35075288

ABSTRACT

Sickle cell disease (SCD) and transfusion-dependent ß-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34+ cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling ßA-T87Q-globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively. Inclusion and exclusion criteria were similar to those for allogeneic transplantation but restricted to patients lacking geno-identical, histocompatible donors. Four patients with TDT and three patients with SCD, ages 13-21 years, were treated after busulfan myeloablation 4.6-7.9 years ago, with a median follow-up of 4.5 years. Key primary endpoints included mortality, engraftment, replication-competent lentivirus and clonal dominance. No adverse events related to the drug product were observed. Clinical remission and remediation of biological hallmarks of the disease have been sustained in two of the three patients with SCD, and frequency of transfusions was reduced in the third. The patients with TDT are all transfusion free with improvement of dyserythropoiesis and iron overload.


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy , Lentivirus/genetics , beta-Thalassemia/therapy , Adolescent , Female , Genetic Therapy/adverse effects , Humans , Male , Treatment Outcome , Young Adult
13.
BioDrugs ; 34(5): 625-647, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32897504

ABSTRACT

ß-Globin gene transfer has been used as a paradigm for hematopoietic stem cell (HSC) gene therapy, but is subject to major difficulties, such as the lack of selection of genetically corrected HSCs, the need for high-level expression of the therapeutic gene, and cell-specific transgene expression. It took more than 40 years for scientists and physicians to advance from the cloning of globin gene and discovering globin gene mutations to improving our understanding of the pathophysiological mechanisms involved, the detection of genetic modifiers, the development of animal models and gene transfer vectors, comprehensive animal testing, and demonstrations of phenotypic improvement in clinical trials, culminating in the authorization of the first gene therapy product for ß-thalassemia in 2019. Research has focused mostly on the development of lentiviral gene therapy vectors expressing variants of the ß-globin gene or, more recently, targeting a γ-globin repressor, some of which have entered clinical testing and should soon diversify the available treatments and promote price competition. These results are encouraging, but we have yet to reach the end of the story. New molecular and cellular tools, such as gene editing or the development of induced pluripotent stem cells, are being developed, heralding the emergence of alternative products, the efficacy and safety of which are being studied. Hemoglobin disorders constitute an important model for testing the pros and cons of these advanced technologies, some of which are already in the clinical phase. In this review, we focus on the development of the advanced products and recent technological innovations that could lead to clinical trials in the near future, and provide hope for a definitive cure of these severe conditions.


Subject(s)
Genetic Therapy , beta-Thalassemia , Animals , Gene Editing , Genetic Vectors , Therapies, Investigational , beta-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy
14.
Mol Ther Methods Clin Dev ; 17: 589-600, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32300607

ABSTRACT

In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle ß-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.

15.
Exp Hematol ; 36(4): 412-23, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18295963

ABSTRACT

OBJECTIVE: To investigate whether expression of a membrane-anchored form of erythropoietin (MbEpo) results in self-controlled, autocrine proliferation, and differentiation of erythroid cells. This would provide a possible approach to the selective expansion of genetically corrected erythroid cells in gene-therapy protocols. MATERIALS AND METHODS: We designed retroviral vectors encoding MbEpo or secreted erythropoietin (Epo) and enhanced green fluorescent protein. Several Epo-dependent cell lines were transduced and their proliferative capacity evaluated. This approach was also assessed in human bone marrow CD34(+) cells and mouse bone marrow transplants. RESULTS: Retroviral vector-mediated MbEpo expression induced autocrine proliferation of the Epo-dependent cell lines DAE7 and UT7/Epo. However, it blocked the Epo receptor (EpoR)-induced activation of granulocyte macrophage colony-stimulating factor-dependent UT7/GM cells and the erythroid differentiation of both human hematopoietic cells in vitro and of mouse bone marrow cells in transplant experiments. MbEpo was present at the surface of UT7/GM cells. It did not affect the membrane localization of the EpoR, but prevented its normal Epo-dependent phosphorylation and internalization. By contrast to these inhibitory effects, a higher rate of EpoR replenishment in UT7/GM cells before MbEpo production rendered cell proliferation independent of exogenous growth factor. CONCLUSIONS: Activation of EpoR gene expression before MbEpo-induced EpoR activation is essential for activation or inhibition of growth and differentiation of Epo-dependent cell lines. It will be necessary to delay MbEpo expression in late erythroid progenitors until after EpoR gene activation, for erythroid cell expansion to be achieved in vivo.


Subject(s)
Erythropoietin/metabolism , Hematopoietic Stem Cells/metabolism , Receptors, Cell Surface/metabolism , Receptors, Erythropoietin/metabolism , Animals , Bone Marrow Transplantation , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Erythropoietin/genetics , Erythropoietin/pharmacology , Hematopoietic Stem Cells/drug effects , Humans , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, Cell Surface/drug effects , Receptors, Erythropoietin/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Up-Regulation
16.
Mol Ther Nucleic Acids ; 17: 277-288, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31279229

ABSTRACT

Gene editing following designer nuclease cleavage in the presence of a DNA donor template can revert mutations in disease-causing genes. For optimal benefit, reversion of the point mutation in HBB leading to sickle cell disease (SCD) would permit precise homology-directed repair (HDR) while concurrently limiting on-target non-homologous end joining (NHEJ)-based HBB disruption. In this study, we directly compared the relative efficiency of co-delivery of a novel CRISPR/Cas9 ribonucleoprotein targeting HBB in association with recombinant adeno-associated virus 6 (rAAV6) versus single-stranded oligodeoxynucleotides (ssODNs) to introduce the sickle mutation (GTC or GTG; encoding E6V) or a silent change (GAA; encoding E6optE) in human CD34+ mobilized peripheral blood stem cells (mPBSCs) derived from healthy donors. In vitro, rAAV6 outperformed ssODN donor template delivery and mediated greater HDR correction, leading to both higher HDR rates and a higher HDR:NHEJ ratio. In contrast, at 12-14 weeks post-transplant into recipient, immunodeficient, NOD, B6, SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice, a ∼6-fold higher proportion of ssODN-modified cells persisted in vivo compared to recipients of rAAV6-modified mPBSCs. Together, our findings highlight that methodology for donor template delivery markedly impacts long-term persistence of HBB gene-modified mPBSCs, and they suggest that the ssODN platform is likely to be most amenable to direct clinical translation.

17.
Mol Ther Methods Clin Dev ; 12: 175-183, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30705922

ABSTRACT

Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or ß-thalassemia.

18.
Sci Transl Med ; 11(503)2019 07 31.
Article in English | MEDLINE | ID: mdl-31366580

ABSTRACT

Reactivation of fetal hemoglobin (HbF) is being pursued as a treatment strategy for hemoglobinopathies. Here, we evaluated the therapeutic potential of hematopoietic stem and progenitor cells (HSPCs) edited with the CRISPR-Cas9 nuclease platform to recapitulate naturally occurring mutations identified in individuals who express increased amounts of HbF, a condition known as hereditary persistence of HbF. CRISPR-Cas9 treatment and transplantation of HSPCs purified on the basis of surface expression of the CD34 receptor in a nonhuman primate (NHP) autologous transplantation model resulted in up to 30% engraftment of gene-edited cells for >1 year. Edited cells effectively and stably reactivated HbF, as evidenced by up to 18% HbF-expressing erythrocytes in peripheral blood. Similar results were obtained by editing highly enriched stem cells, defined by the markers CD34+CD90+CD45RA-, allowing for a 10-fold reduction in the number of transplanted target cells, thus considerably reducing the need for editing reagents. The frequency of engrafted, gene-edited cells persisting in vivo using this approach may be sufficient to ameliorate the phenotype for a number of genetic diseases.


Subject(s)
CRISPR-Cas Systems/genetics , Fetal Hemoglobin/metabolism , Hematopoietic Stem Cells/cytology , Animals , Antigens, CD34/metabolism , Fetal Hemoglobin/genetics , Gene Editing , Genotype , Hematopoietic Stem Cell Transplantation , Humans , Macaca mulatta , Primates , Thy-1 Antigens/metabolism
19.
Mol Ther Methods Clin Dev ; 9: 313-322, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30038935

ABSTRACT

Lentiviral vector (LVV)-mediated transduction of human CD34+ hematopoietic stem and progenitor cells (HSPCs) holds tremendous promise for the treatment of monogenic hematological diseases. This approach requires the generation of a sufficient proportion of gene-modified cells. We identified staurosporine, a serine/threonine kinase inhibitor, as a small molecule that could be added to the transduction process to increase the proportion of genetically modified HSPCs by overcoming a LVV entry barrier. Staurosporine increased vector copy number (VCN) approximately 2-fold when added to mobilized peripheral blood (mPB) CD34+ cells prior to transduction. Limited staurosporine treatment did not affect viability of cells post-transduction, and there was no difference in in vitro colony formation compared to vehicle-treated cells. Xenotransplantation studies identified a statistically significant increase in VCN in engrafted human cells in mouse bone marrow at 4 months post-transplantation compared to vehicle-treated cells. Prostaglandin E2 (PGE2) is known to increase transduction efficiency of HSPCs through a different mechanism. Combining staurosporine and PGE2 resulted in further enhancement of transduction efficiency, particularly in short-term HSPCs. The combinatorial use of small molecules, such as staurosporine and PGE2, to enhance LVV transduction of human CD34+ cells is a promising method to improve transduction efficiency and subsequent potential therapeutic benefit of gene therapy drug products.

20.
Hum Gene Ther ; 32(23-24): 1423-1424, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34935454

Subject(s)
Genetic Therapy , France
SELECTION OF CITATIONS
SEARCH DETAIL