Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Exp Brain Res ; 236(6): 1815-1824, 2018 06.
Article in English | MEDLINE | ID: mdl-29666885

ABSTRACT

Phantom limb pain is a restricting condition for a substantial number of amputees with quite different characteristics of pain. Here, we report on a forearm amputee with constant phantom pain in the hand, in whom we could regularly elicit the rare phenomenon of referred cramping phantom pain by touching the face. To clarify the underlying mechanisms, we followed the cramp during the course of an axillary blockade of the brachial plexus. During the blockade, both phantom pain and the referred cramp were abolished, while a referred sensation of "being touched at the phantom" persisted. Furthermore, to identify the cortical substrate, we elicited the cramp during functional magnetic imaging. Imaging revealed that referred cramping phantom limb pain was associated with brain activation of the hand representation in the primary sensorimotor cortex. The results support the hypothesis that referred cramping phantom limb pain in this case is associated with a substantial brain activation in the hand area of the deafferented sensorimotor cortex. However, this alone is not sufficient to elicit referred cramping phantom limb pain. Peripheral inputs, both, from the arm nerves affected by the amputation and from the skin in the face at which the referred cramp is evoked, are a precondition for referred cramping phantom limb pain to occur, at least in this case.


Subject(s)
Face/physiology , Hand/physiopathology , Muscle Cramp/physiopathology , Nerve Block/methods , Pain, Referred/physiopathology , Phantom Limb/physiopathology , Somatosensory Cortex/physiopathology , Touch Perception/physiology , Amputees , Anesthetics, Local/pharmacology , Brachial Plexus/drug effects , Bupivacaine/pharmacology , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Phantom Limb/diagnostic imaging , Somatosensory Cortex/diagnostic imaging , Touch Perception/drug effects
2.
Front Hum Neurosci ; 17: 1240937, 2023.
Article in English | MEDLINE | ID: mdl-37746055

ABSTRACT

Introduction: Several studies have found changes in the organization of the primary somatosensory cortex (SI) after amputation. This SI reorganization was mainly investigated by stimulating neighboring areas to amputation. Unexpectedly, the somatosensory representation of the deafferented limb has rarely been directly tested. Methods: We stimulated the truncated peroneal nerve in 24 unilateral transtibial amputees and 15 healthy controls. The stimulation intensity was adjusted to make the elicited percept comparable between both stimulation sides. Neural sources of the somatosensory-evoked magnetic fields (SEFs) to peroneal stimulation were localized in the contralateral foot/leg areas of SI in 19 patients and 14 healthy controls. Results: We demonstrated the activation of functionally preserved cortical representations of amputated lower limbs. None of the patients reported evoked phantom limb pain (PLP) during stimulation. Stimulation that evoked perceptions in the foot required stronger intensities on the amputated side than on the intact side. In addition to this, stronger stimulation intensities were required for amputees than for healthy controls. Exploratorily, PLP intensity was neither associated with stimulation intensity nor dipole strength nor with differences in Euclidean distances (between SEF sources of the healthy peroneus and mirrored SEF sources of the truncated peroneus). Discussion: Our results provide hope that the truncated nerve may be used to establish both motor control and somatosensory feedback via the nerve trunk when a permanently functional connection between the nerve trunk and the prosthesis becomes available.

3.
Front Neurol ; 9: 270, 2018.
Article in English | MEDLINE | ID: mdl-29755399

ABSTRACT

Phantom limb pain (PLP) develops in most patients with lower limb amputation. Changes in the peripheral and central nervous system (CNS) are hypothesized to contribute to PLP. Based on ideas to modify neural reorganization within the CNS, the aim of the study was to test, whether prostheses with somatosensory feedback might help to reduce PLP, and increase the functionality of movement with a prosthesis. We therefore equipped the prostheses of 14 lower leg amputees with a simple to use feedback system that provides electrocutaneous feedback to patients' thigh whenever the foot and toes of the prosthesis touch the ground. Two weeks of training with such a feedback prosthesis reduced PLP, increased the functional use of the prosthesis, and increased patients' satisfaction with prosthesis use. We found a significant overall reduction of PLP during the course of the training period. Most patients reported lower PLP intensities at the end of the day while before training they have usually experienced maximal PLP intensities. Furthermore, patients also reported larger walking distances and more stable walking and better posture control while walking on and across a bumpy or soft ground. After training, the majority of participants (9/14) preferred such a feedback system over no feedback. This study extends former observations of a similar training procedure with arm amputees who used a similar feedback training to improve the functionality of an arm prosthesis in manipulating and grasping objects.

SELECTION OF CITATIONS
SEARCH DETAIL