Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur Heart J ; 40(28): 2290-2300, 2019 07 21.
Article in English | MEDLINE | ID: mdl-30854560

ABSTRACT

AIMS: Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age. METHODS AND RESULTS: Associations between VRFs (smoking, hypertension, pulse pressure, diabetes, hypercholesterolaemia, body mass index, and waist-hip ratio) and brain structural and diffusion MRI markers were examined in UK Biobank (N = 9722, age range 44-79 years). A larger number of VRFs was associated with greater brain atrophy, lower grey matter volume, and poorer white matter health. Effect sizes were small (brain structural R2 ≤1.8%). Higher aggregate vascular risk was related to multiple regional MRI hallmarks associated with dementia risk: lower frontal and temporal cortical volumes, lower subcortical volumes, higher white matter hyperintensity volumes, and poorer white matter microstructure in association and thalamic pathways. Smoking pack years, hypertension and diabetes showed the most consistent associations across all brain measures. Hypercholesterolaemia was not uniquely associated with any MRI marker. CONCLUSION: Higher levels of VRFs were associated with poorer brain health across grey and white matter macrostructure and microstructure. Effects are mainly additive, converging upon frontal and temporal cortex, subcortical structures, and specific classes of white matter fibres. Though effect sizes were small, these results emphasize the vulnerability of brain health to vascular factors even in relatively healthy middle and older age, and the potential to partly ameliorate cognitive decline by addressing these malleable risk factors.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Cerebrovascular Disorders/epidemiology , Magnetic Resonance Imaging , Adult , Aged , Biological Specimen Banks , Female , Humans , Male , Middle Aged , Risk Factors , United Kingdom
2.
Cereb Cortex ; 28(8): 2959-2975, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771288

ABSTRACT

Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44-77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.


Subject(s)
Biological Specimen Banks , Brain Mapping , Brain/physiology , Sex Characteristics , Adult , Aged , Biological Specimen Banks/statistics & numerical data , Brain/diagnostic imaging , Community Health Planning , Connectome , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Rest , United Kingdom , White Matter/diagnostic imaging
3.
Biol Psychiatry ; 86(7): 536-544, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31171358

ABSTRACT

BACKGROUND: Schizophrenia is a neurodevelopmental disorder with many genetic variants of individually small effect contributing to phenotypic variation. Lower cortical thickness (CT), surface area, and cortical volume have been demonstrated in people with schizophrenia. Furthermore, a range of obstetric complications (e.g., lower birth weight) are consistently associated with an increased risk for schizophrenia. We investigated whether a high polygenic risk score for schizophrenia (PGRS-SCZ) is associated with CT, surface area, and cortical volume in UK Biobank, a population-based sample, and tested for interactions with birth weight. METHODS: Data were available for 2864 participants (nmale/nfemale = 1382/1482; mean age = 62.35 years, SD = 7.40). Linear mixed models were used to test for associations among PGRS-SCZ and cortical volume, surface area, and CT and between PGRS-SCZ and birth weight. Interaction effects of these variables on cortical structure were also tested. RESULTS: We found a significant negative association between PGRS-SCZ and global CT; a higher PGRS-SCZ was associated with lower CT across the whole brain. We also report a significant negative association between PGRS-SCZ and insular lobe CT. PGRS-SCZ was not associated with birth weight and no PGRS-SCZ × birth weight interactions were found. CONCLUSIONS: These results suggest that individual differences in CT are partly influenced by genetic variants and are most likely not due to factors downstream of disease onset. This approach may help to elucidate the genetic pathophysiology of schizophrenia. Further investigation in case-control and high-risk samples could help identify any localized effects of PGRS-SCZ, and other potential schizophrenia risk factors, on CT as symptoms develop.


Subject(s)
Cerebral Cortex/pathology , Schizophrenia/genetics , Schizophrenia/pathology , Aged , Birth Weight/physiology , Cerebral Cortex/diagnostic imaging , Databases, Factual , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Risk , Schizophrenia/diagnostic imaging
4.
Schizophr Res ; 184: 128-136, 2017 06.
Article in English | MEDLINE | ID: mdl-27989645

ABSTRACT

There are established differences in cortical thickness (CT) in schizophrenia (SCZ) and bipolar (BD) patients when compared to healthy controls (HC). However, it is unknown to what extent environmental or genetic risk factors impact on CT in these populations. We have investigated the effect of Environmental Risk Scores (ERS) and Polygenic Risk Scores for SCZ (PGRS-SCZ) on CT. Structural MRI scans were acquired at 3T for patients with SCZ or BD (n=57) and controls (n=41). Cortical reconstructions were generated in FreeSurfer (v5.3). The ERS was created by determining exposure to cannabis use, childhood adverse events, migration, urbanicity and obstetric complications. The PGRS-SCZ were generated, for a subset of the sample (Patients=43, HC=32), based on the latest PGC GWAS findings. ANCOVAs were used to test the hypotheses that ERS and PGRS-SCZ relate to CT globally, and in frontal and temporal lobes. An increase in ERS was negatively associated with CT within temporal lobe for patients. A higher PGRS-SCZ was also related to global cortical thinning for patients. ERS effects remained significant when including PGRS-SCZ as a fixed effect. No relationship which survived FDR correction was found for ERS and PGRS-SCZ in controls. Environmental risk for SCZ was related to localised cortical thinning in patients with SCZ and BD, while increased PGRS-SCZ was associated with global cortical thinning. Genetic and environmental risk factors for SCZ appear therefore to have differential effects. This provides a mechanistic means by which different risk factors may contribute to the development of SCZ and BD.


Subject(s)
Bipolar Disorder , Cerebral Cortex/pathology , Multifactorial Inheritance , Risk Assessment , Schizophrenia , Adult , Bipolar Disorder/etiology , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Cerebral Cortex/diagnostic imaging , Environment , Female , Humans , Magnetic Resonance Imaging , Male , Schizophrenia/etiology , Schizophrenia/genetics , Schizophrenia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL