Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Cell ; 157(2): 313-328, 2014 04 10.
Article in English | MEDLINE | ID: mdl-24656405

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Piperidines/pharmacology , Quinolines/pharmacology , Small Molecule Libraries/pharmacology , Animals , Cell Death/drug effects , Heterografts , Humans , Hydroxyquinolines/pharmacology , MAP Kinase Kinase 4/metabolism , Mice , Neoplasm Transplantation , Pinocytosis/drug effects , Vacuoles/metabolism , Zebrafish
3.
Bioinformatics ; 38(8): 2263-2268, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35176145

ABSTRACT

MOTIVATION: Inferring an accurate gene regulatory network (GRN) has long been a key goal in the field of systems biology. To do this, it is important to find a suitable balance between the maximum number of true positive and the minimum number of false-positive interactions. Another key feature is that the inference method can handle the large size of modern experimental data, meaning the method needs to be both fast and accurate. The Least Squares Cut-Off (LSCO) method can fulfill both these criteria, however as it is based on least squares it is vulnerable to known issues of amplifying extreme values, small or large. In GRN this manifests itself with genes that are erroneously hyper-connected to a large fraction of all genes due to extremely low value fold changes. RESULTS: We developed a GRN inference method called Least Squares Cut-Off with Normalization (LSCON) that tackles this problem. LSCON extends the LSCO algorithm by regularization to avoid hyper-connected genes and thereby reduce false positives. The regularization used is based on normalization, which removes effects of extreme values on the fit. We benchmarked LSCON and compared it to Genie3, LASSO, LSCO and Ridge regression, in terms of accuracy, speed and tendency to predict hyper-connected genes. The results show that LSCON achieves better or equal accuracy compared to LASSO, the best existing method, especially for data with extreme values. Thanks to the speed of least squares regression, LSCON does this an order of magnitude faster than LASSO. AVAILABILITY AND IMPLEMENTATION: Data: https://bitbucket.org/sonnhammergrni/lscon; Code: https://bitbucket.org/sonnhammergrni/genespider. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Gene Regulatory Networks , Least-Squares Analysis , Systems Biology , Benchmarking
4.
PLoS Comput Biol ; 18(3): e1009844, 2022 03.
Article in English | MEDLINE | ID: mdl-35239640

ABSTRACT

In many human cancers, the rate of cell growth depends crucially on the size of the tumor cell population. Low, zero, or negative growth at low population densities is known as the Allee effect; this effect has been studied extensively in ecology, but so far lacks a good explanation in the cancer setting. Here, we formulate and analyze an individual-based model of cancer, in which cell division rates are increased by the local concentration of an autocrine growth factor produced by the cancer cells themselves. We show, analytically and by simulation, that autocrine signaling suffices to cause both strong and weak Allee effects. Whether low cell densities lead to negative (strong effect) or reduced (weak effect) growth rate depends directly on the ratio of cell death to proliferation, and indirectly on cellular dispersal. Our model is consistent with experimental observations from three patient-derived brain tumor cell lines grown at different densities. We propose that further studying and quantifying population-wide feedback, impacting cell growth, will be central for advancing our understanding of cancer dynamics and treatment, potentially exploiting Allee effects for therapy.


Subject(s)
Autocrine Communication , Neoplasms , Ecology , Feedback , Humans , Models, Biological , Population Density , Population Dynamics
5.
Bioinformatics ; 37(20): 3553-3559, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-33978748

ABSTRACT

MOTIVATION: Accurate inference of gene regulatory interactions is of importance for understanding the mechanisms of underlying biological processes. For gene expression data gathered from targeted perturbations, gene regulatory network (GRN) inference methods that use the perturbation design are the top performing methods. However, the connection between the perturbation design and gene expression can be obfuscated due to problems, such as experimental noise or off-target effects, limiting the methods' ability to reconstruct the true GRN. RESULTS: In this study, we propose an algorithm, IDEMAX, to infer the effective perturbation design from gene expression data in order to eliminate the potential risk of fitting a disconnected perturbation design to gene expression. We applied IDEMAX to synthetic data from two different data generation tools, GeneNetWeaver and GeneSPIDER, and assessed its effect on the experiment design matrix as well as the accuracy of the GRN inference, followed by application to a real dataset. The results show that our approach consistently improves the accuracy of GRN inference compared to using the intended perturbation design when much of the signal is hidden by noise, which is often the case for real data. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/sonnhammergrni/idemax. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

6.
Mol Syst Biol ; 17(9): e10105, 2021 09.
Article in English | MEDLINE | ID: mdl-34528760

ABSTRACT

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/genetics , Cell Line, Tumor , Glioblastoma/genetics , Humans , Neoplasm Recurrence, Local , Single-Cell Analysis
7.
Glia ; 68(2): 316-327, 2020 02.
Article in English | MEDLINE | ID: mdl-31509308

ABSTRACT

Glioblastoma (GBM) is a deadly disease with a need for deeper understanding and new therapeutic approaches. The microenvironment of glioblastoma has previously been shown to guide glioblastoma progression. In this study, astrocytes were investigated with regard to their effect on glioblastoma proliferation through correlative analyses of clinical samples and experimental in vitro and in vivo studies. Co-culture techniques were used to investigate the GBM growth enhancing potential of astrocytes. Cell sorting and RNA sequencing were used to generate a GBM-associated astrocyte signature and to investigate astrocyte-induced GBM genes. A NOD scid GBM mouse model was used for in vivo studies. A gene signature reflecting GBM-activated astrocytes was associated with poor prognosis in the TCGA GBM dataset. Two genes, periostin and serglycin, induced in GBM cells upon exposure to astrocytes were expressed at higher levels in cases with high "astrocyte signature score". Astrocytes were shown to enhance glioblastoma cell growth in cell lines and in a patient-derived culture, in a manner dependent on cell-cell contact and involving increased cell proliferation. Furthermore, co-injection of astrocytes with glioblastoma cells reduced survival in an orthotopic GBM model in NOD scid mice. In conclusion, this study suggests that astrocytes contribute to glioblastoma growth and implies this crosstalk as a candidate target for novel therapies.


Subject(s)
Astrocytes/metabolism , Brain Neoplasms/metabolism , Cell Movement/physiology , Glioblastoma/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Coculture Techniques , Disease Models, Animal , Glioblastoma/pathology , Glioma/metabolism , Humans , Mice, Inbred NOD
8.
Bioinformatics ; 35(18): 3357-3364, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30715209

ABSTRACT

MOTIVATION: Medulloblastoma (MB) is a brain cancer predominantly arising in children. Roughly 70% of patients are cured today, but survivors often suffer from severe sequelae. MB has been extensively studied by molecular profiling, but often in small and scattered cohorts. To improve cure rates and reduce treatment side effects, accurate integration of such data to increase analytical power will be important, if not essential. RESULTS: We have integrated 23 transcription datasets, spanning 1350 MB and 291 normal brain samples. To remove batch effects, we combined the Removal of Unwanted Variation (RUV) method with a novel pipeline for determining empirical negative control genes and a panel of metrics to evaluate normalization performance. The documented approach enabled the removal of a majority of batch effects, producing a large-scale, integrative dataset of MB and cerebellar expression data. The proposed strategy will be broadly applicable for accurate integration of data and incorporation of normal reference samples for studies of various diseases. We hope that the integrated dataset will improve current research in the field of MB by allowing more large-scale gene expression analyses. AVAILABILITY AND IMPLEMENTATION: The RUV-normalized expression data is available through the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and can be accessed via the GSE series number GSE124814. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Gene Expression , Gene Expression Profiling , Humans
9.
J Pathol ; 247(2): 228-240, 2019 02.
Article in English | MEDLINE | ID: mdl-30357839

ABSTRACT

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor which lacks efficient treatment and predictive biomarkers. Expression of the epithelial stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been described in GBM, but its functional role has not been conclusively elucidated. Here, we have investigated the role of LGR5 in a large repository of patient-derived GBM stem cell (GSC) cultures. The consequences of LGR5 overexpression or depletion have been analyzed using in vitro and in vivo methods, which showed that, among those with highest LGR5 expression (LGR5high ), there were two phenotypically distinct groups: one that was dependent on LGR5 for its malignant properties and another that was unaffected by changes in LGR5 expression. The LGR5-responding cultures could be identified by their significantly higher self-renewal capacity as measured by extreme limiting dilution assay (ELDA), and these LGR5high -ELDAhigh cultures were also significantly more malignant and invasive compared to the LGR5high -ELDAlow cultures. This showed that LGR5 expression alone would not be a strict marker of LGR5 responsiveness. In a search for additional biomarkers, we identified LPAR4, CCND2, and OLIG2 that were significantly upregulated in LGR5-responsive GSC cultures, and we found that OLIG2 together with LGR5 were predictive of GSC radiation and drug response. Overall, we show that LGR5 regulates the malignant phenotype in a subset of patient-derived GSC cultures, which supports its potential as a predictive GBM biomarker. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Brain Neoplasms/metabolism , Cell Movement , Cell Proliferation , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Self Renewal , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Phenotype , Radiation Tolerance , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Tumor Cells, Cultured
10.
Stat Appl Genet Mol Biol ; 16(4): 217-242, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28862994

ABSTRACT

The systematic study of transcriptional responses to genetic and chemical perturbations in human cells is still in its early stages. The largest available dataset to date is the newly released L1000 compendium. With its 1.3 million gene expression profiles of treated human cells it offers many opportunities for biomedical data mining, but also data normalization challenges of new dimensions. We developed a novel and practical approach to obtain accurate estimates of fold change response profiles from L1000, based on the RUV (Remove Unwanted Variation) statistical framework. Extending RUV to a big data setting, we propose an estimation procedure, in which an underlying RUV model is tuned by feedback through dataset specific statistical measures, reflecting p-value distributions and internal gene knockdown controls. Applying these metrics - termed evaluation endpoints - to disjoint data splits and integrating the results to select an optimal normalization, the procedure reduces bias and noise in the L1000 data, which in turn broadens the potential of this resource for pharmacological and functional genomic analyses. Our pipeline and normalization results are distributed as an R package (nelanderlab.org/FC1000.html).


Subject(s)
Transcriptome , Cell Line , Data Mining , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis
11.
Nucleic Acids Res ; 43(15): e98, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-25953855

ABSTRACT

Statistical network modeling techniques are increasingly important tools to analyze cancer genomics data. However, current tools and resources are not designed to work across multiple diagnoses and technical platforms, thus limiting their applicability to comprehensive pan-cancer datasets such as The Cancer Genome Atlas (TCGA). To address this, we describe a new data driven modeling method, based on generalized Sparse Inverse Covariance Selection (SICS). The method integrates genetic, epigenetic and transcriptional data from multiple cancers, to define links that are present in multiple cancers, a subset of cancers, or a single cancer. It is shown to be statistically robust and effective at detecting direct pathway links in data from TCGA. To facilitate interpretation of the results, we introduce a publicly accessible tool (cancerlandscapes.org), in which the derived networks are explored as interactive web content, linked to several pathway and pharmacological databases. To evaluate the performance of the method, we constructed a model for eight TCGA cancers, using data from 3900 patients. The model rediscovered known mechanisms and contained interesting predictions. Possible applications include prediction of regulatory relationships, comparison of network modules across multiple forms of cancer and identification of drug targets.


Subject(s)
Models, Genetic , Models, Statistical , Neoplasms/genetics , Antineoplastic Agents/pharmacology , Chromosome Deletion , Chromosomes, Human, Pair 11 , DNA Copy Number Variations , DNA Methylation , Genomics/methods , Glioma/genetics , Humans , Internet , Isocitrate Dehydrogenase/genetics , Kaplan-Meier Estimate , MicroRNAs/metabolism , Mutation , Neoplasms/mortality , RNA, Messenger/metabolism , Software
12.
BMC Cancer ; 16(1): 683, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27562229

ABSTRACT

BACKGROUND: The progression of colorectal cancer (CRC) involves recurrent amplifications/mutations in the epidermal growth factor receptor (EGFR) and downstream signal transducers of the Ras pathway, KRAS and BRAF. Whether genetic events predicted to result in increased and constitutive signaling indeed lead to enhanced biological activity is often unclear and, due to technical challenges, unexplored. Here, we investigated proliferative signaling in CRC using a highly sensitive method for protein detection. The aim of the study was to determine whether multiple changes in proliferative signaling in CRC could be combined and exploited as a "complex biomarker" for diagnostic purposes. METHODS: We used robotized capillary isoelectric focusing as well as conventional immunoblotting for the comprehensive analysis of epidermal growth factor receptor signaling pathways converging on extracellular regulated kinase 1/2 (ERK1/2), AKT, phospholipase Cγ1 (PLCγ1) and c-SRC in normal mucosa compared with CRC stage II and IV. Computational analyses were used to test different activity patterns for the analyzed signal transducers. RESULTS: Signaling pathways implicated in cell proliferation were differently dysregulated in CRC and, unexpectedly, several were downregulated in disease. Thus, levels of activated ERK1 (pERK1), but not pERK2, decreased in stage II and IV while total ERK1/2 expression remained unaffected. In addition, c-SRC expression was lower in CRC compared with normal tissues and phosphorylation on the activating residue Y418 was not detected. In contrast, PLCγ1 and AKT expression levels were elevated in disease. Immunoblotting of the different signal transducers, run in parallel to capillary isoelectric focusing, showed higher variability and lower sensitivity and resolution. Computational analyses showed that, while individual signaling changes lacked predictive power, using the combination of changes in three signaling components to create a "complex biomarker" allowed with very high accuracy, the correct diagnosis of tissues as either normal or cancerous. CONCLUSIONS: We present techniques that allow rapid and sensitive determination of cancer signaling that can be used to differentiate colorectal cancer from normal tissue.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Signal Transduction , Biopsy , CSK Tyrosine-Protein Kinase , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Isoelectric Focusing/methods , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Neoplasm Staging , Phospholipase C gamma/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sensitivity and Specificity , src-Family Kinases/metabolism
13.
Exp Cell Res ; 339(2): 280-8, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26511503

ABSTRACT

Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.


Subject(s)
Glioma/metabolism , Glioma/pathology , Microglia/metabolism , Monocytes/metabolism , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Computational Biology , Female , Humans , Male , Microglia/pathology , Monocytes/pathology , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Tissue Array Analysis , Wnt Proteins/biosynthesis , Wnt Proteins/genetics , Wnt-5a Protein
14.
Bioinformatics ; 30(12): i130-8, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24931976

ABSTRACT

MOTIVATION: Gene regulatory network (GRN) inference reveals the influences genes have on one another in cellular regulatory systems. If the experimental data are inadequate for reliable inference of the network, informative priors have been shown to improve the accuracy of inferences. RESULTS: This study explores the potential of undirected, confidence-weighted networks, such as those in functional association databases, as a prior source for GRN inference. Such networks often erroneously indicate symmetric interaction between genes and may contain mostly correlation-based interaction information. Despite these drawbacks, our testing on synthetic datasets indicates that even noisy priors reflect some causal information that can improve GRN inference accuracy. Our analysis on yeast data indicates that using the functional association databases FunCoup and STRING as priors can give a small improvement in GRN inference accuracy with biological data.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Saccharomyces cerevisiae/genetics
15.
Mol Genet Genomics ; 289(5): 727-34, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24728588

ABSTRACT

Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding-the elucidation of the basic and presumably conserved "design" and "engineering" principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.


Subject(s)
Biomedical Research/standards , Systems Biology , Humans , Models, Biological , Reference Standards
16.
Cell Rep ; 43(6): 114309, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38848215

ABSTRACT

Glioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory. Mechanistically, METTL7B downregulates the expression of key neuronal differentiation players, including SALL2, via post-translational modifications of histone marks.


Subject(s)
Cell Differentiation , Cell Lineage , Glioblastoma , Methyltransferases , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Cell Lineage/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Cell Line, Tumor , Astrocytes/metabolism , Astrocytes/pathology , Organoids/metabolism , Organoids/pathology
18.
PLoS Comput Biol ; 8(6): e1002556, 2012.
Article in English | MEDLINE | ID: mdl-22719241

ABSTRACT

The brain tumour glioblastoma is characterised by diffuse and infiltrative growth into surrounding brain tissue. At the macroscopic level, the progression speed of a glioblastoma tumour is determined by two key factors: the cell proliferation rate and the cell migration speed. At the microscopic level, however, proliferation and migration appear to be mutually exclusive phenotypes, as indicated by recent in vivo imaging data. Here, we develop a mathematical model to analyse how the phenotypic switching between proliferative and migratory states of individual cells affects the macroscopic growth of the tumour. For this, we propose an individual-based stochastic model in which glioblastoma cells are either in a proliferative state, where they are stationary and divide, or in motile state in which they are subject to random motion. From the model we derive a continuum approximation in the form of two coupled reaction-diffusion equations, which exhibit travelling wave solutions whose speed of invasion depends on the model parameters. We propose a simple analytical method to predict progression rate from the cell-specific parameters and demonstrate that optimal glioblastoma growth depends on a non-trivial trade-off between the phenotypic switching rates. By linking cellular properties to an in vivo outcome, the model should be applicable to designing relevant cell screens for glioblastoma and cytometry-based patient prognostics.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Models, Biological , Apoptosis , Cell Movement , Cell Proliferation , Computational Biology , Computer Simulation , Disease Progression , Humans , Neoplasm Invasiveness/pathology , Phenotype , Prognosis , Stochastic Processes
19.
Genes Chromosomes Cancer ; 51(8): 805-17, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22505352

ABSTRACT

Adenoid cystic carcinoma (ACC) of the head and neck is a malignant tumor with poor long-term prognosis. Besides the recently identified MYB-NFIB fusion oncogene generated by a t(6;9) translocation, little is known about other genetic alterations in ACC. Using high-resolution, array-based comparative genomic hybridization, and massively paired-end sequencing, we explored genomic alterations in 40 frozen ACCs. Eighty-six percent of the tumors expressed MYB-NFIB fusion transcripts and 97% overexpressed MYB mRNA, indicating that MYB activation is a hallmark of ACC. Thirty-five recurrent copy number alterations (CNAs) were detected, including losses involving 12q, 6q, 9p, 11q, 14q, 1p, and 5q and gains involving 1q, 9p, and 22q. Grade III tumors had on average a significantly higher number of CNAs/tumor compared to Grade I and II tumors (P = 0.007). Losses of 1p, 6q, and 15q were associated with high-grade tumors, whereas losses of 14q were exclusively seen in Grade I tumors. The t(6;9) rearrangements were associated with a complex pattern of breakpoints, deletions, insertions, inversions, and for 9p also gains. Analyses of fusion-negative ACCs using high-resolution arrays and massively paired-end sequencing revealed that MYB may also be deregulated by other mechanisms in addition to gene fusion. Our studies also identified several down-regulated candidate tumor suppressor genes (CTNNBIP1, CASP9, PRDM2, and SFN) in 1p36.33-p35.3 that may be of clinical significance in high-grade tumors. Further, studies of these and other potential target genes may lead to the identification of novel driver genes in ACC.


Subject(s)
Carcinoma, Adenoid Cystic/genetics , DNA Copy Number Variations , Gene Rearrangement , Genes, myb , Head and Neck Neoplasms/genetics , NFI Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Comparative Genomic Hybridization , Female , Genes, Tumor Suppressor , Humans , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
20.
Commun Biol ; 6(1): 402, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055469

ABSTRACT

Cancer cell migration is a driving mechanism of invasion in solid malignant tumors. Anti-migratory treatments provide an alternative approach for managing disease progression. However, we currently lack scalable screening methods for identifying novel anti-migratory drugs. To this end, we develop a method that can estimate cell motility from single end-point images in vitro by estimating differences in the spatial distribution of cells and inferring proliferation and diffusion parameters using agent-based modeling and approximate Bayesian computation. To test the power of our method, we use it to investigate drug responses in a collection of 41 patient-derived glioblastoma cell cultures, identifying migration-associated pathways and drugs with potent anti-migratory effects. We validate our method and result in both in silico and in vitro using time-lapse imaging. Our proposed method applies to standard drug screen experiments, with no change needed, and emerges as a scalable approach to screen for anti-migratory drugs.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Bayes Theorem , Disease Progression , Cell Culture Techniques , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL