ABSTRACT
Antiretroviral therapy (ART) does not cure HIV-1 infection due to the persistence of proviruses in long-lived resting T cells. Strategies targeting these latently infected cells will be necessary to eradicate HIV-1 in infected individuals. Protein kinase C (PKC) activation is an effective mechanism to reactivate latent proviruses and allows for recognition and clearance of infected cells by the immune system. Several ingenol compounds, naturally occurring PKC agonists, have been described to have potent latency reversal activity. We sought to optimize this activity by synthesizing a library of novel ingenols via esterification of the C-3 hydroxyl group of the ingenol core, which itself is inactive for latency reversal. Newly synthesized ingenol derivatives were evaluated for latency reversal activity, cellular activation, and cytotoxicity alongside commercially available ingenols (ingenol-3,20-dibenzoate, ingenol 3-hexanoate, and ingenol-3-angelate) in HIV latency cell lines and resting CD4+ T cells from aviremic participants. Among the synthetic ingenols that we produced, we identified several compounds that demonstrate high efficacy and represent promising leads as latency reversal agents for HIV-1 eradication.
Subject(s)
Diterpenes/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Protein Kinase C/metabolism , Virus Latency/drug effects , Antiretroviral Therapy, Highly Active/methods , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Diterpenes/metabolism , HIV Infections/metabolism , Humans , Jurkat Cells , Proviruses/drug effects , Virus Activation/drug effectsABSTRACT
Latency reversing agents (LRAs), such as protein kinase C (PKC) agonists, constitute a promising strategy for exposing and eliminating the HIV-1 latent reservoir. PKC agonists activate NF-κB and induce deleterious pro-inflammatory cytokine production. Adjuvant pharmacological agents, such as ruxolitinib, a JAK inhibitor, have previously been combined with LRAs to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 reactivation in vitro. Histone deacetylase inhibitors (HDACi) are known to dampen pro-inflammatory cytokine secretion in the context of other diseases and synergize with LRAs to reactivate latent HIV-1. This study investigates whether a panel of epigenetic modifiers, including HDACi, could dampen PKC-induced pro-inflammatory cytokine secretion during latency reversal. We screened an epigenetic modifier library for compounds that reduced intracellular IL-6 production induced by the PKC agonist Ingenol-3,20-dibenzoate. We further tested the most promising epigenetic inhibitor class, HDACi, for their ability to reduce pro-inflammatory cytokines and reactivate latent HIV-1 ex vivo. We identified nine epigenetic modulators that reduced PKC-induced intracellular IL-6. In cells from aviremic individuals living with HIV-1, the HDAC1-3 inhibitor, suberohydroxamic acid (SBHA), reduced secretion of pro-inflammatory cytokines TNF-α, IL-5, IL-2r, and IL-17 but did not significantly reactivate latent HIV-1 when combined with Ingenol-3,20-dibenzoate. Combining SBHA and Ingenol-3,20-dibenzoate reduces deleterious cytokine production during latency reversal but does not induce significant viral reactivation in aviremic donor PBMCs. The ability of SBHA to reduce PKC-induced pro-inflammatory cytokines when combined with Ingenol-3,20-dibenzoate suggests SBHA can be used to reduced PKC induced pro-inflammatory cytokines but not to achieve latency reversal in the context of HIV-1.
Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Cytokines/metabolism , Diterpenes/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Inflammation Mediators/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Protein Kinase C/metabolism , Virus Activation/drug effects , Virus Latency/drug effectsABSTRACT
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that specifically target bacterial metabolites but are also identified as innate-like sensors of viral infection. Individuals with chronic HIV-1 infection have lower numbers of circulating MAIT cells compared with healthy individuals, yet the features of the MAIT TCR repertoire are not well known. We isolated and stimulated human PBMCs from healthy non-HIV-infected donors (HD), HIV-infected progressors on antiretroviral therapy, and HIV-infected elite controllers (EC). We sorted MAIT cells using flow cytometry and used a high-throughput sequencing method with bar coding to link the expression of TCRα, TCRß, and functional genes of interest at the single-cell level. We show differential patterns of MAIT TCR usage among the groups. We observed expansions of certain dominant MAIT clones in HIV-infected individuals upon Escherichia coli stimulation, which was not observed in clones of HD. We also found different patterns of CDR3 amino acid distributions among the three groups. Furthermore, we found blunted expression of phenotypic genes in HIV individuals; most notably, HD mounted a robust IFNG response to stimulation, whereas both HIV-infected progressors and EC did not. In conclusion, our study describes the diverse MAIT TCR repertoire of persons with chronic HIV-1 infection and suggest that MAIT clones of HIV-infected persons may be primed for expansion more than that of noninfected persons. Further studies are needed to examine the functional significance of unique MAIT cell TCR usage in EC.
Subject(s)
HIV Infections/pathology , Leukocytes, Mononuclear/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , Adult , Aged , Anti-HIV Agents/therapeutic use , Disease Progression , Elite Controllers , Escherichia coli/physiology , Female , Flow Cytometry , HIV Infections/drug therapy , High-Throughput Nucleotide Sequencing , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/immunology , Receptors, Antigen, T-Cell/immunologyABSTRACT
Euphorbia usambarica is a traditional medicine used for gynecologic, endocrine, and urogenital illnesses in East Africa; however, its constituents and bioactivities have not been investigated. A variety of compounds isolated from Euphorbia species have been shown to have activity against latent HIV-1, the major source of HIV-1 persistence despite antiretroviral therapy. We performed bioactivity-guided isolation to identify 15 new diterpenoids (1-9, 14-17, 19, and 20) along with 16 known compounds from E. usambarica with HIV-1 latency reversal activity. Euphordraculoate C (1) exhibits a rare 6/6/3-fused ring system with a 2-methyl-2-cyclopentenone moiety. Usambariphanes A (2) and B (3) display an unusual lactone ring constructed between C-17 and C-2 in the jatrophane structure. 4ß-Crotignoid K (14) revealed a 250-fold improvement in latency reversal activity compared to crotignoid K (13), identifying that configuration at the C-4 of tigliane diterpenoids is critical to HIV-1 latency reversal activity. The primary mechanism of the active diterpenoids 12-14 and 21 for the HIV-1 latency reversal activity was activation of PKC, while lignans 26 and 27 that did not increase CD69 expression, suggesting a non-PKC mechanism. Accordingly, natural constituents from E. usambarica have the potential to contribute to the development of HIV-1 eradication strategies.
ABSTRACT
The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA-positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART.