Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 484
Filter
Add more filters

Publication year range
1.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37804831

ABSTRACT

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Subject(s)
Alphavirus , Animals , Humans , Chikungunya Fever , Chikungunya virus/chemistry , Mammals , Receptors, Virus/metabolism
2.
Cell ; 177(7): 1725-1737.e16, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31080061

ABSTRACT

Mxra8 is a receptor for multiple arthritogenic alphaviruses that cause debilitating acute and chronic musculoskeletal disease in humans. Herein, we present a 2.2 Å resolution X-ray crystal structure of Mxra8 and 4 to 5 Å resolution cryo-electron microscopy reconstructions of Mxra8 bound to chikungunya (CHIKV) virus-like particles and infectious virus. The Mxra8 ectodomain contains two strand-swapped Ig-like domains oriented in a unique disulfide-linked head-to-head arrangement. Mxra8 binds by wedging into a cleft created by two adjacent CHIKV E2-E1 heterodimers in one trimeric spike and engaging a neighboring spike. Two binding modes are observed with the fully mature VLP, with one Mxra8 binding with unique contacts. Only the high-affinity binding mode was observed in the complex with infectious CHIKV, as viral maturation and E3 occupancy appear to influence receptor binding-site usage. Our studies provide insight into how Mxra8 binds CHIKV and creates a path for developing alphavirus entry inhibitors.


Subject(s)
Chikungunya virus/chemistry , Membrane Proteins/chemistry , Viral Envelope Proteins/chemistry , Chikungunya virus/metabolism , Chikungunya virus/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , Humans , Membrane Proteins/metabolism , Protein Domains , Viral Envelope Proteins/metabolism
3.
Cell ; 166(4): 1016-1027, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27475895

ABSTRACT

Zika virus (ZIKV) infection during pregnancy has emerged as a global public health problem because of its ability to cause severe congenital disease. Here, we developed six mouse monoclonal antibodies (mAbs) against ZIKV including four (ZV-48, ZV-54, ZV-64, and ZV-67) that were ZIKV specific and neutralized infection of African, Asian, and American strains to varying degrees. X-ray crystallographic and competition binding analyses of Fab fragments and scFvs defined three spatially distinct epitopes in DIII of the envelope protein corresponding to the lateral ridge (ZV-54 and ZV-67), C-C' loop (ZV-48 and ZV-64), and ABDE sheet (ZV-2) regions. In vivo passive transfer studies revealed protective activity of DIII-lateral ridge specific neutralizing mAbs in a mouse model of ZIKV infection. Our results suggest that DIII is targeted by multiple type-specific antibodies with distinct neutralizing activity, which provides a path for developing prophylactic antibodies for use in pregnancy or designing epitope-specific vaccines against ZIKV.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Viral Envelope Proteins/chemistry , Zika Virus/chemistry , Zika Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Epitope Mapping , Epitopes , Mice , Mice, Inbred C57BL , Models, Molecular , Zika Virus/classification , Zika Virus Infection/immunology , Zika Virus Infection/virology
4.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34022127

ABSTRACT

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , B-Lymphocytes/metabolism , Computational Biology/methods , Cross Reactions/immunology , Epitope Mapping , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Humans , Immunodominant Epitopes/genetics , Immunologic Memory , Male , Neutralization Tests , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
5.
Nature ; 598(7882): 672-676, 2021 10.
Article in English | MEDLINE | ID: mdl-34646020

ABSTRACT

LDLRAD3 is a recently defined attachment and entry receptor for Venezuelan equine encephalitis virus (VEEV)1, a New World alphavirus that causes severe neurological disease in humans. Here we present near-atomic-resolution cryo-electron microscopy reconstructions of VEEV virus-like particles alone and in a complex with the ectodomains of LDLRAD3. Domain 1 of LDLRAD3 is a low-density lipoprotein receptor type-A module that binds to VEEV by wedging into a cleft created by two adjacent E2-E1 heterodimers in one trimeric spike, and engages domains A and B of E2 and the fusion loop in E1. Atomic modelling of this interface is supported by mutagenesis and anti-VEEV antibody binding competition assays. Notably, VEEV engages LDLRAD3 in a manner that is similar to the way that arthritogenic alphaviruses bind to the structurally unrelated MXRA8 receptor, but with a much smaller interface. These studies further elucidate the structural basis of alphavirus-receptor interactions, which could inform the development of therapies to mitigate infection and disease against multiple members of this family.


Subject(s)
Encephalitis Virus, Venezuelan Equine/chemistry , Receptors, LDL/chemistry , Receptors, Virus/chemistry , Amino Acid Sequence , Animals , Cell Line , Cryoelectron Microscopy , Humans , Mice , Models, Molecular , Protein Structure, Secondary , Sequence Alignment , Virus Internalization
6.
Nature ; 588(7837): 308-314, 2020 12.
Article in English | MEDLINE | ID: mdl-33208938

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a neurotropic alphavirus transmitted by mosquitoes that causes encephalitis and death in humans1. VEEV is a biodefence concern because of its potential for aerosol spread and the current lack of sufficient countermeasures. The host factors that are required for VEEV entry and infection remain poorly characterized. Here, using a genome-wide CRISPR-Cas9-based screen, we identify low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3)-a highly conserved yet poorly characterized member of the scavenger receptor superfamily-as a receptor for VEEV. Gene editing of mouse Ldlrad3 or human LDLRAD3 results in markedly reduced viral infection of neuronal cells, which is restored upon complementation with LDLRAD3. LDLRAD3 binds directly to VEEV particles and enhances virus attachment and internalization into host cells. Genetic studies indicate that domain 1 of LDLRAD3 (LDLRAD3(D1)) is necessary and sufficient to support infection by VEEV, and both anti-LDLRAD3 antibodies and an LDLRAD3(D1)-Fc fusion protein block VEEV infection in cell culture. The pathogenesis of VEEV infection is abrogated in mice with deletions in Ldlrad3, and administration of LDLRAD3(D1)-Fc abolishes disease caused by several subtypes of VEEV, including highly virulent strains. The development of a decoy-receptor fusion protein suggests a strategy for the prevention of severe VEEV infection and associated disease in humans.


Subject(s)
Encephalitis Virus, Venezuelan Equine/metabolism , Receptors, LDL/metabolism , Receptors, Virus/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Line , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalomyelitis, Venezuelan Equine/metabolism , Encephalomyelitis, Venezuelan Equine/prevention & control , Encephalomyelitis, Venezuelan Equine/virology , Female , Genetic Complementation Test , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, Virus/genetics , Virus Attachment , Virus Internalization
7.
Nature ; 586(7831): 769-775, 2020 10.
Article in English | MEDLINE | ID: mdl-33057200

ABSTRACT

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Subject(s)
Genetic Predisposition to Disease/genetics , Hematopoietic Stem Cells/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Neoplasms/genetics , Neoplasms/pathology , Cell Lineage/genetics , Cell Self Renewal , Checkpoint Kinase 2/genetics , Female , Humans , Leukocytes/pathology , Male , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Risk , Telomere Homeostasis
8.
9.
Nature ; 565(7740): 468-471, 2019 01.
Article in English | MEDLINE | ID: mdl-30643207

ABSTRACT

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1-14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance-for example, enhancing the capacitance of a ferroelectric-dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8-12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric-dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

11.
Eur Heart J ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848106

ABSTRACT

BACKGROUND AND AIMS: A cardiovascular disease polygenic risk score (CVD-PRS) can stratify individuals into different categories of cardiovascular risk, but whether the addition of a CVD-PRS to clinical risk scores improves the identification of individuals at increased risk in a real-world clinical setting is unknown. METHODS: The Genetics and the Vascular Health Check Study (GENVASC) was embedded within the UK National Health Service Health Check (NHSHC) programme which invites individuals between 40-74 years of age without known CVD to attend an assessment in a UK general practice where CVD risk factors are measured and a CVD risk score (QRISK2) is calculated. Between 2012-2020, 44,141 individuals (55.7% females, 15.8% non-white) who attended an NHSHC in 147 participating practices across two counties in England were recruited and followed. When 195 individuals (cases) had suffered a major CVD event (CVD death, myocardial infarction or acute coronary syndrome, coronary revascularisation, stroke), 396 propensity-matched controls with a similar risk profile were identified, and a nested case-control genetic study undertaken to see if the addition of a CVD-PRS to QRISK2 in the form of an integrated risk tool (IRT) combined with QRISK2 would have identified more individuals at the time of their NHSHC as at high risk (QRISK2 10-year CVD risk of ≥10%), compared with QRISK2 alone. RESULTS: The distribution of the standardised CVD-PRS was significantly different in cases compared with controls (cases mean score .32; controls, -.18, P = 8.28×10-9). QRISK2 identified 61.5% (95% confidence interval [CI]: 54.3%-68.4%) of individuals who subsequently developed a major CVD event as being at high risk at their NHSHC, while the combination of QRISK2 and IRT identified 68.7% (95% CI: 61.7%-75.2%), a relative increase of 11.7% (P = 1×10-4). The odds ratio (OR) of being up-classified was 2.41 (95% CI: 1.03-5.64, P = .031) for cases compared with controls. In individuals aged 40-54 years, QRISK2 identified 26.0% (95% CI: 16.5%-37.6%) of those who developed a major CVD event, while the combination of QRISK2 and IRT identified 38.4% (95% CI: 27.2%-50.5%), indicating a stronger relative increase of 47.7% in the younger age group (P = .001). The combination of QRISK2 and IRT increased the proportion of additional cases identified similarly in women as in men, and in non-white ethnicities compared with white ethnicity. The findings were similar when the CVD-PRS was added to the atherosclerotic cardiovascular disease pooled cohort equations (ASCVD-PCE) or SCORE2 clinical scores. CONCLUSIONS: In a clinical setting, the addition of genetic information to clinical risk assessment significantly improved the identification of individuals who went on to have a major CVD event as being at high risk, especially among younger individuals. The findings provide important real-world evidence of the potential value of implementing a CVD-PRS into health systems.

12.
Blood ; 140(16): 1803-1815, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36070233

ABSTRACT

Platelet transfusion and transplantation of allogeneic stem cells and solid organs are life-saving therapies. Unwanted alloantibodies to nonself human leukocyte antigens (HLAs) on donor cells increase the immunological barrier to these therapies and are important causes of platelet transfusion refractoriness and graft rejection. Although the specificities of anti-HLA antibodies can be determined at the allelic level, traditional treatments for antibody-mediated rejection nonselectively suppress humoral immunity and are not universally successful. We designed HLA-Fc fusion proteins with a bivalent targeting module derived from extracellular domains of HLA and an Fc effector module from mouse IgG2a. We found that HLA-Fc with A2 (A2Fc) and B7 (B7Fc) antigens lowered HLA-A2- and HLA-B7-specific reactivities, respectively, in sera from HLA-sensitized patients. A2Fc and B7Fc bound to B-cell hybridomas bearing surface immunoglobulins with cognate specificities and triggered antigen-specific and Fc-dependent cytotoxicity in vitro. In immunodeficient mice carrying HLA-A2-specific hybridoma cells, A2Fc treatment lowered circulating anti-HLA-A2 levels, abolished the outgrowth of hybridoma cells, and prolonged survival compared with control groups. In an in vivo anti-HLA-A2-mediated platelet transfusion refractoriness model, A2Fc treatment mitigated refractoriness. These results support HLA-Fc being a novel strategy for antigen-specific humoral suppression to improve transfusion and transplantation outcomes. With the long-term goal of targeting HLA-specific memory B cells for desensitization, further studies of HLA-Fc's efficacy in immune-competent animal models are warranted.


Subject(s)
Isoantibodies , Thrombocytopenia , Humans , Mice , Animals , HLA-B7 Antigen , HLA Antigens , Graft Rejection , Antilymphocyte Serum , HLA-A2 Antigen , Antibody-Producing Cells , Immunoglobulin G , Receptors, Antigen, B-Cell
13.
BMC Cardiovasc Disord ; 24(1): 94, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326736

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) frequently co-exist. There is a limited understanding on whether this coexistence is associated with distinct alterations in myocardial remodelling and mechanics. We aimed to determine if patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) represent a distinct phenotype. METHODS: In this secondary analysis of adults with HFpEF (NCT03050593), participants were comprehensively phenotyped with stress cardiac MRI, echocardiography and plasma fibroinflammatory biomarkers, and were followed for the composite endpoint (HF hospitalisation or death) at a median of 8.5 years. Those with AF were compared to sinus rhythm (SR) and unsupervised cluster analysis was performed to explore possible phenotypes. RESULTS: 136 subjects were included (SR = 75, AF = 61). The AF group was older (76 ± 8 vs. 70 ± 10 years) with less diabetes (36% vs. 61%) compared to the SR group and had higher left atrial (LA) volumes (61 ± 30 vs. 39 ± 15 mL/m2, p < 0.001), lower LA ejection fraction (EF) (31 ± 15 vs. 51 ± 12%, p < 0.001), worse left ventricular (LV) systolic function (LVEF 63 ± 8 vs. 68 ± 8%, p = 0.002; global longitudinal strain 13.6 ± 2.9 vs. 14.7 ± 2.4%, p = 0.003) but higher LV peak early diastolic strain rates (0.73 ± 0.28 vs. 0.53 ± 0.17 1/s, p < 0.001). The AF group had higher levels of syndecan-1, matrix metalloproteinase-2, proBNP, angiopoietin-2 and pentraxin-3, but lower level of interleukin-8. No difference in clinical outcomes was observed between the groups. Three distinct clusters were identified with the poorest outcomes (Log-rank p = 0.029) in cluster 2 (hypertensive and fibroinflammatory) which had equal representation of SR and AF. CONCLUSIONS: Presence of AF in HFpEF is associated with cardiac structural and functional changes together with altered expression of several fibro-inflammatory biomarkers. Distinct phenotypes exist in HFpEF which may have differing clinical outcomes.


Subject(s)
Atrial Fibrillation , Heart Failure , Multiparametric Magnetic Resonance Imaging , Humans , Adult , Stroke Volume , Matrix Metalloproteinase 2 , Ventricular Function, Left , Biomarkers , Phenotype , Prognosis
14.
Nucleic Acids Res ; 50(3): 1620-1638, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35104878

ABSTRACT

The life of RNA polymerase II (RNAPII) transcripts is shaped by the dynamic formation of mutually exclusive ribonucleoprotein complexes (RNPs) that direct transcript biogenesis and turnover. A key regulator of RNA metabolism in the nucleus is the scaffold protein ARS2 (arsenic resistance protein 2), bound to the cap binding complex (CBC). We report here that alternative splicing of ARS2's intron 5, generates cytoplasmic isoforms that lack 270 amino acids from the N-terminal of the protein and are functionally distinct from nuclear ARS2. Switching of ARS2 isoforms within the CBC in the cytoplasm has dramatic functional consequences, changing ARS2 from a NMD inhibitor to a NMD promoter that enhances the binding of UPF1 to NCBP1 and ERF1, favouring SURF complex formation, SMG7 recruitment and transcript degradation. ARS2 isoform exchange is also relevant during arsenic stress, where cytoplasmic ARS2 promotes a global response to arsenic in a CBC-independent manner. We propose that ARS2 isoform switching promotes the proper recruitment of RNP complexes during NMD and the cellular response to arsenic stress. The existence of non-redundant ARS2 isoforms is relevant for cell homeostasis, and stress response.


Subject(s)
Arsenic , Nonsense Mediated mRNA Decay , Arsenic/metabolism , Cell Nucleus/metabolism , Nonsense Mediated mRNA Decay/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Helicases/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
15.
J Appl Clin Med Phys ; 25(5): e14318, 2024 May.
Article in English | MEDLINE | ID: mdl-38427776

ABSTRACT

PURPOSE: To quantify the impact of treatment planning system beam model parameters, based on the actual spread in radiotherapy community data, on clinical treatment plans and determine which complexity metrics best describe the impact beam modeling errors have on dose accuracy. METHODS: Ten beam modeling parameters for a Varian accelerator were modified in RayStation to match radiotherapy community data at the 2.5, 25, 50, 75, and 97.5 percentile levels. These modifications were evaluated on 25 patient cases, including prostate, non-small cell lung, H&N, brain, and mesothelioma, generating 1,000 plan perturbations. Differences in the mean planned dose to clinical target volumes (CTV) and organs at risk (OAR) were evaluated with respect to the planned dose using the reference (50th-percentile) parameter values. Correlation between CTV dose differences, and 18 different complexity metrics were evaluated using linear regression; R-squared values were used to determine the best metric. RESULTS: Perturbations to MLC offset and transmission parameters demonstrated the greatest changes in dose: up to 5.7% in CTVs and 16.7% for OARs. More complex clinical plans showed greater dose perturbation with atypical beam model parameters. The mean MLC Gap and Tongue & Groove index (TGi) complexity metrics best described the impact of TPS beam modeling variations on clinical dose delivery across all anatomical sites; similar, though not identical, trends between complexity and dose perturbation were observed among all sites. CONCLUSION: Extreme values for MLC offset and MLC transmission beam modeling parameters were found to most substantially impact the dose distribution of clinical plans and careful attention should be given to these beam modeling parameters. The mean MLC Gap and TGi complexity metrics were best suited to identifying clinical plans most sensitive to beam modeling errors; this could help provide focus for clinical QA in identifying unacceptable plans.


Subject(s)
Neoplasms , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Algorithms
16.
Circulation ; 146(12): 917-929, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35735005

ABSTRACT

BACKGROUND: Genome-wide association studies have identified many genetic loci that are robustly associated with coronary artery disease (CAD). However, the underlying biological mechanisms are still unknown for most of these loci, hindering the progress to medical translation. Evidence suggests that the genetic influence on CAD susceptibility may act partly through vascular smooth muscle cells (VSMCs). METHODS: We undertook genotyping, RNA sequencing, and cell behavior assays on a large bank of VSMCs (n>1499). Expression quantitative trait locus and splicing quantitative trait locus analyses were performed to identify genes with an expression that was influenced by CAD-associated variants. To identify candidate causal genes for CAD, we ascertained colocalizations of VSMC expression quantitative trait locus signals with CAD association signals by performing causal variants identification in associated regions analysis and the summary data-based mendelian randomization test. Druggability analysis was then performed on the candidate causal genes. CAD risk variants were tested for associations with VSMC proliferation, migration, and apoptosis. Collective effects of multiple CAD-associated variants on VSMC behavior were estimated by polygenic scores. RESULTS: Approximately 60% of the known CAD-associated variants showed statistically significant expression quantitative trait locus or splicing quantitative trait locus effects in VSMCs. Colocalization analyses identified 84 genes with expression quantitative trait locus signals that significantly colocalized with CAD association signals, identifying them as candidate causal genes. Druggability analysis indicated that 38 of the candidate causal genes were druggable, and 13 had evidence of drug-gene interactions. Of the CAD-associated variants tested, 139 showed suggestive associations with VSMC proliferation, migration, or apoptosis. A polygenic score model explained up to 5.94% of variation in several VSMC behavior parameters, consistent with polygenic influences on VSMC behavior. CONCLUSIONS: This comprehensive analysis shows that a large percentage of CAD loci can modulate gene expression in VSMCs and influence VSMC behavior. Several candidate causal genes identified are likely to be druggable and thus represent potential therapeutic targets.


Subject(s)
Coronary Artery Disease , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci
17.
J Am Chem Soc ; 145(20): 11121-11129, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37172079

ABSTRACT

Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.

18.
Am Heart J ; 266: 106-119, 2023 12.
Article in English | MEDLINE | ID: mdl-37709108

ABSTRACT

BACKGROUND: Out-of-hospital cardiac arrest (OHCA) affects over 300,000 individuals per year in the United States with poor survival rates overall. A remarkable 5-fold difference in survival-to-hospital discharge rates exist across United States communities. METHODS: We conducted a study using qualitative research methods comparing the system of care across sites in Michigan communities with varying OHCA survival outcomes, as measured by return to spontaneous circulation with pulse upon emergency department arrival. RESULTS: Major themes distinguishing higher performing sites were (1) working as a team, (2) devoting resources to coordination across agencies, and (3) developing a continuous quality improvement culture. These themes spanned the chain of survival framework for OHCA. By examining the unique processes, procedures, and characteristics of higher- relative to lower-performing sites, we gleaned lessons learned that appear to distinguish higher performers. The higher performing sites reported being the most collaborative, due in part to facilitation of system integration by progressive leadership that is willing to build bridges among stakeholders. CONCLUSIONS: Based on the distinguishing features of higher performing sites, we provide recommendations for toolkit development to improve survival in prehospital systems of care for OHCA.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Out-of-Hospital Cardiac Arrest , Humans , United States/epidemiology , Cardiopulmonary Resuscitation/methods , Out-of-Hospital Cardiac Arrest/therapy , Quality Improvement , Emergency Service, Hospital
19.
Global Health ; 19(1): 72, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37740185

ABSTRACT

A number of scientific publications and commentaries have suggested that standard preparedness indices such as the Global Health Security Index (GHSI) and Joint External Evaluation (JEE) scores did not predict COVID-19 outcomes. To some, the failure of these metrics to be predictive demonstrates the need for a fundamental reassessment which better aligns preparedness measurement with operational capacities in real-world stress situations, including the points at which coordination structures and decision-making may fail. There are, however, several reasons why these instruments should not be so easily rejected as preparedness measures.From a methodological point of view, these studies use relatively simple outcome measures, mostly based on cumulative numbers of cases and deaths at a fixed point of time. A country's "success" in dealing with the pandemic is highly multidimensional - both in the health outcomes and type and timing of interventions and policies - is too complex to represent with a single number. In addition, the comparability of mortality data over time and among jurisdictions is questionable due to highly variable completeness and representativeness. Furthermore, the analyses use a cross-sectional design, which is poorly suited for evaluating the impact of interventions, especially for COVID-19.Conceptually, a major reason that current preparedness measures fail to predict pandemic outcomes is that they do not adequately capture variations in the presence of effective political leadership needed to activate and implement existing system, instill confidence in the government's response; or background levels of interpersonal trust and trust in government institutions and country ability needed to mount fast and adaptable responses. These factors are crucial; capacity alone is insufficient if that capacity is not effectively leveraged. However, preparedness metrics are intended to identify gaps that countries must fill. As important as effective political leadership and trust in institutions, countries cannot be held accountable to one another for having good political leadership or trust in institutions. Therefore, JEE scores, the GHSI, and similar metrics can be useful tools for identifying critical gaps in capacities and capabilities that are necessary but not sufficient for an effective pandemic response.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Cross-Sectional Studies , Benchmarking , Government , Leadership
20.
PLoS Genet ; 16(7): e1008835, 2020 07.
Article in English | MEDLINE | ID: mdl-32644988

ABSTRACT

In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as "hub" metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait.


Subject(s)
Aging/genetics , Drosophila Proteins/genetics , Longevity/genetics , Metabolome/genetics , Receptors, G-Protein-Coupled/genetics , Aging/metabolism , Aging/pathology , Animals , Caloric Restriction , Diet , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental/genetics , Insulin/genetics , Metabolomics , Mutation/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL