Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Inhal Toxicol ; 27(11): 576-84, 2015.
Article in English | MEDLINE | ID: mdl-26514785

ABSTRACT

CONTEXT: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. OBJECTIVES: We compared the formation of covalent DNA adducts by the in vitro metabolic activation of organic extracts of diesel-exhaust particles (DEP) from petroleum diesel and soy biodiesel and correlated DNA adduct levels and mutagenicity in Salmonella TA100. METHODS: We examined two different DEP from petroleum diesel (C-DEP and B0), one from soy bean oil biodiesel (B100) and one from combustion of a blend of 20% B100 and 80% B0 (B20) for in vitro DNA adduct-forming potential under oxidative or nitroreductive conditions in the presence of calf thymus DNA as well as in vivo in Salmonella TA100. The modified DNA was hydrolyzed and analyzed by (32)P-postlabeling using either butanol extraction or nuclease P1 pre-enrichment. RESULTS: Multiple DNA adducts were produced with chromatographic mobilities consistent with PAH and nitro-PAH adducts. The types and quantities of DNA adducts produced by the two independent petroleum diesel DEP were similar, with both polycyclic aromatic hydrocarbon (PAH)- and nitro-PAH-derived adducts formed. Relative potencies for S9-mediated DNA adduct formation, either per mass of particulate or per MJ(th) energy consumed were B100 > B0 > B20. CONCLUSIONS: Soy biodiesel emissions induced DNA damage in the form of presumptive PAH and nitro-PAH DNA adducts that correlated with mutagenicity in Salmonella. B20 is the soy biodiesel used most commonly in the US, and it produced the lowest DNA adduct-emission factor, ∼50% that of petroleum diesel.


Subject(s)
Biofuels/toxicity , DNA Adducts/biosynthesis , Particulate Matter/toxicity , Salmonella/drug effects , Salmonella/metabolism , Vehicle Emissions/toxicity , Air Pollutants/toxicity , Dose-Response Relationship, Drug
2.
Mater Express ; 14(2): 249-263, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-39026927

ABSTRACT

Multi-walled Carbon nanotubes (MWCNTs) lack sufficient quality cytotoxicity, toxicity, genotoxicity and genomic data on which to make environmental and regulatory decisions. Therefore, we did a multidisciplinary in vitro study of 3 MWCNTs in human lung cells (BEAS-2B) with the following endpoints: cytotoxicity, DNA damage, reactive oxygen and nitrogen species, lipid peroxidation and mRNA and microRNA expression analyses. The MWCNTs were either unfunctionalized or functionalized with either -OH or -COOH. Doses studied ranged from 0.3 to 100 ug/ml and were exposed to a human lung cell line in vitro for 72 h., with genomic studies being done from 30 ug/ml downward. Some of the genomic pathways that were altered by MWCNT exposure were NRF2 mediated oxidative stress response, DNA damage repair, nuclear excision repair, base excision repair, mitochondrial dysfunction, oxidative phosphorylation, HIF1α signaling, unfolded protein response, protein ubiquitination, ferroptosis and sirtuin signaling pathways. The data suggested that OH functionalized MWCNT caused more and larger gene/microRNA changes, followed by COOH functionalized MWCNT and unfunctionalized MWCNT being the least biologically active. From microRNA target filter analysis, there were altered signaling hubs. MYC is the only hub that altered by all 3 MWCNTs. Signaling hubs that are common to OH and COOH functionalized MWCNTs are GRB2, AR, TP63 and AGO2. The signaling hubs that were only present in OH functionalized MWCNTs are TP53, STAT3 and BRCA1. These signaling pathways and hubs we found in vitro correlated well with the published in vivo pathological effects like oxidative stress DNA damage, inflammation and cancer in MWCNTs treated mice.

3.
Mutagenesis ; 27(5): 541-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22492202

ABSTRACT

The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , DNA Adducts/drug effects , Mutagens/toxicity , Triazoles/toxicity , Animals , Liver/drug effects , Male , Mice , Mutagens/administration & dosage , Mutagens/pharmacology , Mutation/drug effects , Triazoles/administration & dosage , Triazoles/pharmacology
4.
Structure ; 28(5): 540-547.e3, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32142641

ABSTRACT

Francisella tularensis is the causative agent for the potentially fatal disease tularemia. The lipoprotein Flpp3 has been identified as a virulence determinant of tularemia with no sequence homology outside the Francisella genus. We report a room temperature structure of Flpp3 determined by serial femtosecond crystallography that exists in a significantly different conformation than previously described by the NMR-determined structure. Furthermore, we investigated the conformational space and energy barriers between these two structures by molecular dynamics umbrella sampling and identified three low-energy intermediate states, transitions between which readily occur at room temperature. We have also begun to investigate organic compounds in silico that may act as inhibitors to Flpp3. This work paves the road to developing targeted therapeutics against tularemia and aides in our understanding of the disease mechanisms of tularemia.


Subject(s)
Anti-Bacterial Agents/chemistry , Francisella tularensis , Lipoproteins/chemistry , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray/methods , Databases, Pharmaceutical , Drug Evaluation, Preclinical/methods , Francisella tularensis/chemistry , Francisella tularensis/pathogenicity , Humans , Hydrophobic and Hydrophilic Interactions , Lasers , Lipoproteins/antagonists & inhibitors , Lipoproteins/genetics , Molecular Dynamics Simulation , Molecular Targeted Therapy , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Tularemia/drug therapy , Virulence Factors/chemistry
5.
J Nanosci Nanotechnol ; 19(11): 6907-6923, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31039842

ABSTRACT

Nano-TiO2 and nano-CeO2 are among the most widely used engineered nanoparticles (NPs). We investigated a variety of endpoints to assess the toxicity of eight of these NPs to induce potentially adverse health effects in an In Vitro human respiratory epithelial cell model. These endpoints include cytotoxicity, reactive oxygen species (ROS)/reactive nitrogen species (RNS) production, 8-hydroxy-2_-deoxyguanosine (8-oxo-dG), endogenous DNA adducts, Apurinic/apyrimidinic (AP) sites, 4-Hrdoxynonenal (4-HNE) protein adducts, Malondialdehyde (MDA) protein adducts, and genomics analysis on altered signaling pathways. Our results indicated that cytotoxicity assays are relatively insensitive, and we detected changes in other endpoints at concentrations much lower than those inducing cytotoxicity. Among the ROS-related endpoints, 8-oxo-dG is relatively more sensitive than other assays, and nano-TiO2 induced more 8-oxo-dG formation than nano-CeO2. Finally, there are many signaling pathways changes at concentrations at which no cytotoxicity was observed. These alterations in signaling pathways correlated well with In Vitro toxicity that was observed at higher concentrations, and with in vivo adverse outcome pathways caused by nano-TiO2 and nano-CeO2 in experimental animals.


Subject(s)
Epithelial Cells , Titanium , Animals , Humans , Lung , Reactive Oxygen Species , Titanium/toxicity
6.
Cancer Lett ; 247(2): 309-17, 2007 Mar 18.
Article in English | MEDLINE | ID: mdl-16814461

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of carcinogenic chemicals that are ubiquitous in the environment. Fjord-region naphthopyrene isomers are structurally similar to the potent fjord-region PAH carcinogen dibenzo[a,l]pyrene and thus have the potential to be potent carcinogens. Naphtho[1,2-a]pyrene (N[1,2-a]P) exhibited similar bacterial mutagenicity and morphological cell transforming activity when compared to benzo[a]pyrene (B[a]P), whereas the structural isomer, naphtho[1,2-e]pyrene (N[1,2-e]P) was inactive is these bioassays. In this study, we examined the formation of DNA adducts in C3H10T1/2Cl8 (C3H10T1/2) mouse embryo fibroblasts exposed to N[1,2-a]P or N[1,2-e]P and their respective dihydrodiols. The DNA adducts were characterized by co-chromatography with reaction products from anti-N[1,2-a]P diol epoxide (DE) or anti-N[1,2-e]PDE and polydeoxyadenosine (dAdo) or oligodeoxyguanosine (dGuo). C3H10T1/2 fibroblasts exposed to N[1,2-a]P or N[1,2-a]P-9,10-diol produced both anti-N[1,2-a]P-DE-dAdo and -dGuo adducts with total DNA adduction levels of 22.2 to 33.3 pmol DNA adducts/mug DNA. C3H10T1/2 fibroblasts exposed to N[1,2-e]P produced 2 major and 1 minor adducts. C3H10T1/2 fibroblasts exposed to N[1,2-e]P-11,12-diol produced 2 major adducts. All of the identified adducts were anti-N[1,2-e]PDE-dGuo and -dAdo adducts. While the total DNA adduct level in N[1,2-e]P-11,12-diol-treated fibroblasts was extremely high, 105.9 pmol DNA adducts/mug DNA, the level in N[1,2-e]P-treated fibroblasts was 1.47 pmol DNA adducts/microg DNA. We conclude that lack of biological activity of N[1,2-e]P may be related to its inability to form sufficient amounts of N[1,2-e]P-11,12-diol, which would then be metabolized to sufficient amounts of anti-N[1,2-e]PDE needed to transform these fibroblasts.


Subject(s)
DNA Adducts/chemistry , Naphthalenes/chemistry , Pyrenes/chemistry , Animals , Cell Line , Fibroblasts/chemistry , Mice , Mice, Inbred C3H
7.
Biochem Pharmacol ; 72(1): 115-23, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16678797

ABSTRACT

GST isoforms have been extensively studied in adult tissues but little is known about the composition and levels of these enzymes in fetal tissues. As part of our ongoing studies to determine the potential role of metabolic enzymes in mediating the differential susceptibility of different strains of mice to lung tumorigenesis following in utero exposure to 3-methylcholanthrene (MC), we screened for GST enzyme activity and for expression of the individual GSTalpha, pi, mu, and theta isoforms in murine fetal lung and liver tissues isolated from the parental strains and F1 crosses between C57BL/6 (B6) and BALB/c (C) mice. Using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, we found that treatment with MC had no effect on the levels of GST enzyme activity in either the fetal lung or liver in either of the two parental strains or their F1 crosses. Low levels of expression of each of the four enzymes were detected by Western blotting in both fetal lung and liver tissues in all four strains. A statistically significant 3.5-fold induction was observed only for GSTmu in the fetal lung of the parental strain of BALB/c mice 48 h after exposure to MC. None of the other enzymes showed any significant differences in the levels of expression following exposure to MC. Although strain-specific differences in the expression of the GSTs that were independent of MC treatment were observed, they could not account for the differences previously observed in either the Ki-ras mutational spectrum or lung tumor incidence in the different strains of mice. Similar results were obtained when the maternal metabolism of MC was assayed in liver microsomal preparations. The results are consistent with previous studies showing low levels and poor inducibility of phase II enzymes during gestation, and demonstrate for the first time that all four of the major GST enzymes are expressed in fetal tissues. While the high inducibility of activating enzymes, such as Cyp1a1, and low, uninducible levels of phase II conjugating enzymes probably account for the high susceptibility of the fetus to transplacentally induced tumor formation, the results also suggest that factors other than metabolism may account for the strain-specific differences in susceptibility to carcinogen-mediated lung tumor induction following in utero exposure to chemical carcinogens.


Subject(s)
Carcinogens/toxicity , Glutathione Transferase/metabolism , Liver/drug effects , Lung/drug effects , Methylcholanthrene/toxicity , Animals , Carcinogens/pharmacokinetics , Crosses, Genetic , Female , Glutathione Transferase/classification , Glutathione Transferase/genetics , Isoenzymes , Liver/embryology , Liver/enzymology , Lung/embryology , Lung/enzymology , Male , Maternal Exposure , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pregnancy , Species Specificity
8.
Mutat Res ; 521(1-2): 91-102, 2002 Nov 26.
Article in English | MEDLINE | ID: mdl-12438007

ABSTRACT

Benzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products. However, K-region dihydrodiols of several PAHs have recently been shown to morphologically transform mouse embryo C3H10T1/2CL8 cells (C3H10T1/2 cells). Because K-region dihydrodiols are not metabolically formed from PAHs by C3H10T1/2 cells, these cells provide a useful tool to independently study the mechanisms of action of PAHs and their K-region dihydrodiols. Here, we compare the morphological cell transforming, DNA damaging, and DNA adducting activities of the K-region dihydrodiol of B[a]P, trans-B[a]P-4,5-diol with B[a]P. Both trans-B[a]P-4,5-diol and B[a]P morphologically transformed C3H10T1/2 cells by producing both Types II and III transformed foci. The morphological cell transforming and cytotoxicity dose response curves for trans-B[a]P-4,5-diol and B[a]P were indistinguishable. Since morphological cell transformation is strongly associated with mutation and/or larger scale DNA damage in C3H10T1/2 cells, the identification of DNA damage induced in these cells by trans-B[a]P-4,5-diol was sought. Both trans-B[a]P-4,5-diol and B[a]P exhibited significant DNA damaging activity without significant concurrent cytotoxicity using the comet assay, but with different dose responses and comet tail distributions. DNA adduct patterns from C3H10T1/2 cells were examined after trans-B[a]P-4,5-diol or B[a]P treatment using 32P-postlabeling techniques and improved TLC elution systems designed to separate polar DNA adducts. While B[a]P treatment produced one major DNA adduct identified as anti-trans-B[a]P-7,8-diol-9,10-epoxide-deoxyguanosine, no stable covalent DNA adducts were detected in the DNA of trans-B[a]P-4,5-diol-treated cells. In summary, this study provides evidence for the DNA damaging and morphological cell transforming activities of the K-region dihydrodiol of B[a]P, in the absence of covalent stable DNA adducts. While trans-B[a]P-4,5-diol and B[a]P both induce morphological cell transformation, their activities as DNA damaging agents differ, both qualitatively and quantitatively. In concert with the morphological cell transformation activities of other K-region dihydrodiols of PAHs, these data suggest a new mechanism/pathway for the morphological cell transforming activities of B[a]P and its metabolites.


Subject(s)
Benzo(a)pyrene/toxicity , Cell Transformation, Neoplastic/drug effects , DNA Adducts/drug effects , DNA Damage/drug effects , Dihydroxydihydrobenzopyrenes/chemistry , Dihydroxydihydrobenzopyrenes/toxicity , Animals , Benzo(a)pyrene/chemistry , Cells, Cultured , Comet Assay , DNA Adducts/chemistry , DNA Damage/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Fibroblasts/drug effects , Fibroblasts/pathology , Isotope Labeling , Mammals , Mice , Mutagenicity Tests/methods , Phosphorus Radioisotopes
9.
Chem Biol Interact ; 186(2): 157-65, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20346927

ABSTRACT

Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , Benzo(a)pyrene/toxicity , Carcinogens/toxicity , DNA Adducts/biosynthesis , DNA Adducts/chemistry , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Acetylcysteine/pharmacology , Animals , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/metabolism , Carcinogens/chemistry , Carcinogens/metabolism , Free Radical Scavengers/pharmacology , Humans , Male , Mice , Mice, Inbred A , Models, Biological , Phosphorus Radioisotopes , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity
10.
Anal Biochem ; 355(2): 213-23, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16797471

ABSTRACT

Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.


Subject(s)
Benzo(a)pyrene/analysis , Benzopyrenes/analysis , DNA Adducts/analysis , DNA/chemistry , Phosphorus Radioisotopes/chemistry , Quinones/analysis , Alcohol Oxidoreductases/metabolism , Benzo(a)pyrene/analogs & derivatives , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/metabolism , Benzopyrenes/metabolism , Carcinogens/metabolism , Carcinogens/toxicity , Chromatography, High Pressure Liquid , DNA/metabolism , DNA Adducts/chemistry , DNA Adducts/metabolism , Deoxyadenine Nucleotides/analysis , Deoxyadenine Nucleotides/chemistry , Deoxycytosine Nucleotides/analysis , Deoxycytosine Nucleotides/chemistry , Deoxyguanine Nucleotides/analysis , Deoxyguanine Nucleotides/chemistry , Magnetic Resonance Spectroscopy , Mutagens/metabolism , Mutagens/toxicity , Quinones/chemistry , Quinones/metabolism , Reactive Oxygen Species/chemistry , Reference Standards
11.
Toxicol Appl Pharmacol ; 209(1): 28-38, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-15885734

ABSTRACT

Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P(32) post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically significant. These results indicate that differences in Phase I metabolism of MC and formation of MC-DNA adducts are unlikely to account for the marked differences observed in the Ki-ras mutational spectrum seen in previous studies. Further, the results suggest that other genetic factors may interact with chemical carcinogens in determining individual susceptibility to these agents during development.


Subject(s)
Aryl Hydrocarbon Hydroxylases/biosynthesis , Cytochrome P-450 CYP1A1/biosynthesis , DNA Adducts/metabolism , Methylcholanthrene/toxicity , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1 , DNA Mutational Analysis , DNA, Complementary/biosynthesis , Enzyme Induction/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Genes, ras/genetics , Liver/drug effects , Liver/embryology , Liver/enzymology , Lung/drug effects , Lung/embryology , Lung/enzymology , Methylcholanthrene/pharmacokinetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Pregnancy , RNA/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
12.
Anal Biochem ; 334(2): 390-400, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15494147

ABSTRACT

The two major metabolic pathways of benzo[a]pyrene (BP) that lead to DNA lesions are monooxygenation that results in diolepoxides (BPDE) and one-electron oxidation that yields a BP radical cation. These pathways result in formation of stable and depurinating DNA adducts, respectively. Most in vivo animal studies with BP, however, have employed dosage/DNA adduct levels several orders of magnitude higher than the DNA damage level expected from environmentally relevant exposures. Presented are results of experiments in which A/J strain mice were intraperitoneally exposed to 50-microg/g doses of BP. It is shown that non-line-narrowed fluorescence and fluorescence line-narrowing spectroscopies possess the selectivity and sensitivity to distinguish between helix-external, base-stacked, and intercalated conformations of DNA-BPDE adducts formed in lung tissue. Concentrations measured by 32P postlabeling 2 and 3 days after intraperitoneal injection were 420-430 and 600-830 amol BPDE-type adducts per microg DNA. The external and base-stacked conformations are attributed mainly to (+)-trans-anti-BPDE-N2dG and the intercalated conformations to (+)-cis-anti adducts. A stable adduct derived from 9-OH-BP-4,5-epoxide was also detected at a concentration about a factor of 10 lower than the above concentrations. The DNA supernatants were analyzed for the presence of depurinating BP-derived adducts by capillary electrophoresis laser-induced fluorescence and high-performance liquid chromatography mass spectrometry.


Subject(s)
Benzo(a)pyrene/chemistry , DNA Adducts/analysis , DNA Adducts/chemistry , Lung/metabolism , Animals , Benzo(a)pyrene/pharmacology , Lung/drug effects , Mice , Molecular Structure , Spectrometry, Fluorescence , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL