Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Affiliation country
Publication year range
1.
J Clin Apher ; 39(1): e22105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38334173

ABSTRACT

INTRODUCTION: Lipoprotein X (Lp-X) is an abnormal lipoprotein found in multiple disease conditions, including liver dysfunction and cholestasis. High Lp-X concentrations can interfere with some laboratory testing that may result in spurious results. The detection of Lp-X can be challenging, and there is currently a lack of consensus regarding the management of Lp-X other than treating the underlying disease. CASE PRESENTATION: A 42-year-old female with Hodgkin's lymphoma treated with dexamethasone, high dose cytarabine and cisplatin and vanishing bile duct syndrome confirmed by liver biopsy presented with cholestasis, pseudohyponatremia (sodium, 113 mmol/L; reference range 136-146 mmL/L; serum osmolality, 303 mOsm/kg), and hypercholesterolemia (> 2800 mg/dL, reference range < 200 mg/dL). Lp-X was confirmed by lipoprotein electrophoresis (EP). Although she did not manifest any specific signs or symptoms, therapeutic plasma exchange (TPE) was initiated based on laboratory findings of extreme hypercholesterolemia, spuriously abnormal serum sodium, and HDL values, and the potential for short- and long-term sequelae such as hyperviscosity syndrome, xanthoma, and neuropathy. During the hospitalization, she was treated with four 1.0 plasma volume TPE over 6 days using 5% albumin for replacement fluid. After the first TPE, total cholesterol (TC) decreased to 383 mg/dL and sodium was measured at 131 mmol/L. The patient was transitioned into outpatient maintenance TPE to eliminate the potential of Lp-X reappearance while the underlying disease was treated. Serial follow-up laboratory testing with lipoprotein EP showed the disappearance of Lp-X after nine TPEs over a 10-week period. LITERATURE REVIEW: There are seven and four case reports of Lp-X treated with TPE and lipoprotein apheresis (LA), respectively. While all previous case reports showed a reduction in TC levels, none had monitored the disappearance of Lp-X after completing a course of therapeutic apheresis. CONCLUSION: Clinicians should have a heightened suspicion for the presence of abnormal Lp-X in patients with cholestasis, hypercholesterolemia, and pseudohyponatremia. Once Lp-X is confirmed by lipoprotein EP, TPE should be initiated to reduce TC level and remove abnormal Lp-X. Most LA techniques are not expected to be beneficial since Lp-X lacks apolipoprotein B. Therefore, we suggest that inpatient course of TPE be performed every other day until serum sodium, TC and HDL levels become normalized. Outpatient maintenance TPE may also be considered to keep Lp-X levels low while the underlying disease is treated. Serum sodium, TC, and HDL levels should be monitored while on maintenance TPE.


Subject(s)
Cholestasis , Hypercholesterolemia , Female , Humans , Adult , Hypercholesterolemia/complications , Hypercholesterolemia/therapy , Lipoprotein-X , Plasma Exchange , Cholestasis/etiology , Cholestasis/therapy , Lipoproteins , Sodium , Bile Ducts
2.
Crit Rev Clin Lab Sci ; 60(5): 366-381, 2023 08.
Article in English | MEDLINE | ID: mdl-36876586

ABSTRACT

Pediatric patients with exocrine pancreatic insufficiency (EPI) have symptoms that include abdominal pain, weight loss or poor weight gain, malnutrition, and steatorrhea. This condition can be present at birth or develop during childhood for certain genetic disorders. Cystic fibrosis (CF) is the most prevalent disorder in which patients are screened for EPI; other disorders also are associated with pancreatic dysfunction, such as hereditary pancreatitis, Pearson syndrome, and Shwachman-Diamond syndrome. Understanding the clinical presentation and proposed pathophysiology of the pancreatic dysfunction of these disorders aids in diagnosis and treatment. Testing pancreatic function is challenging. Directly testing aspirates produced from the pancreas after stimulation is considered the gold standard, but the procedures are not standardized or widely available. Instead, indirect tests are often used in diagnosis and monitoring. Although indirect tests are more widely available and easier to perform, they have inherent limitations due to a lack of sensitivity and/or specificity for EPI.


Subject(s)
Cystic Fibrosis , Exocrine Pancreatic Insufficiency , Infant, Newborn , Humans , Child , Feces , Pancreatic Elastase , Exocrine Pancreatic Insufficiency/diagnosis , Exocrine Pancreatic Insufficiency/genetics , Pancreas/physiology , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis/complications
3.
Horm Behav ; 155: 105411, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37659358

ABSTRACT

Premenopausal hysterectomy is associated with a greater relative risk of dementia. We previously demonstrated cognitive impairments in adult rats six weeks after hysterectomy with ovarian conservation compared with intact sham-controls and other gynecological surgery variations. Here, we investigated whether hysterectomy-induced cognitive impairments are transient or persistent. Adult rats received sham-control, ovariectomy (Ovx), hysterectomy, or Ovx-hysterectomy surgery. Spatial working memory, reference memory, and anxiety-like behavior were tested either six-weeks post-surgery, in adulthood; seven-months post-surgery, in early middle-age; or twelve-months post-surgery, in late middle-age. Hysterectomy in adulthood yielded spatial working memory deficits at short-, moderate-, and long-term post-surgery intervals. Serum hormone levels did not differ between ovary-intact, but differed from Ovx, groups. Hysterectomy had no significant impact on healthy ovarian follicle or corpora lutea counts for any post-surgery timepoint compared with intact sham-controls. Frontal cortex, dorsal hippocampus, and entorhinal cortex were assessed for activity-dependent markers. In entorhinal cortex, there were alterations in FOSB and ΔFOSB expression during the early middle-age timepoint, and phosphorylated ERK1/2 levels at the adult timepoint. Collectively, results suggest a primary role for the uterus in regulating cognition, and that memory-related neural pathways may be modified following gynecological surgery. This is the first preclinical report of long-term effects of hysterectomy with and without ovarian conservation on cognition, endocrine, ovarian, and brain assessments, initiating a comprehensive framework of gynecological surgery effects. Translationally, findings underscore critical needs to decipher how gynecological surgeries, especially those involving the uterus, impact the brain and its functions, the ovaries, and overall aging from a systems perspective.


Subject(s)
Hysterectomy , Ovary , Female , Humans , Rats , Animals , Ovariectomy/adverse effects , Brain , Cognition , Maze Learning
4.
J Neurosci ; 41(3): 555-575, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33239400

ABSTRACT

Neuronal and network-level hyperexcitability is commonly associated with increased levels of amyloid-ß (Aß) and contribute to cognitive deficits associated with Alzheimer's disease (AD). However, the mechanistic complexity underlying the selective loss of basal forebrain cholinergic neurons (BFCNs), a well-recognized characteristic of AD, remains poorly understood. In this study, we tested the hypothesis that the oligomeric form of amyloid-ß (oAß42), interacting with α7-containing nicotinic acetylcholine receptor (nAChR) subtypes, leads to subnucleus-specific alterations in BFCN excitability and impaired cognition. We used single-channel electrophysiology to show that oAß42 activates both homomeric α7- and heteromeric α7ß2-nAChR subtypes while preferentially enhancing α7ß2-nAChR open-dwell times. Organotypic slice cultures were prepared from male and female ChAT-EGFP mice, and current-clamp recordings obtained from BFCNs chronically exposed to pathophysiologically relevant level of oAß42 showed enhanced neuronal intrinsic excitability and action potential firing rates. These resulted from a reduction in action potential afterhyperpolarization and alterations in the maximal rates of voltage change during spike depolarization and repolarization. These effects were observed in BFCNs from the medial septum diagonal band and horizontal diagonal band, but not the nucleus basalis. Last, aged male and female APP/PS1 transgenic mice, genetically null for the ß2 nAChR subunit gene, showed improved spatial reference memory compared with APP/PS1 aged-matched littermates. Combined, these data provide a molecular mechanism supporting a role for α7ß2-nAChR in mediating the effects of oAß42 on excitability of specific populations of cholinergic neurons and provide a framework for understanding the role of α7ß2-nAChR in oAß42-induced cognitive decline.


Subject(s)
Amyloid beta-Peptides/genetics , Basal Forebrain/physiopathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Parasympathetic Nervous System/physiopathology , Peptide Fragments/genetics , Signal Transduction/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Cell Line , Electrophysiological Phenomena , Female , Genotype , Humans , Male , Maze Learning , Mice , Mice, Transgenic , Neurons/pathology
5.
PLoS Genet ; 15(4): e1008108, 2019 04.
Article in English | MEDLINE | ID: mdl-31017896

ABSTRACT

RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function.


Subject(s)
Cerebral Cortex/metabolism , Learning , Mutation , Neuroglia/metabolism , Noonan Syndrome/genetics , Noonan Syndrome/psychology , Proto-Oncogene Proteins c-raf/genetics , Animals , Biomarkers , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , MAP Kinase Signaling System , Maze Learning , Memory , Mice , Mice, Transgenic , Neurons/metabolism , Noonan Syndrome/metabolism , Oligodendroglia/metabolism , Proto-Oncogene Proteins c-raf/metabolism
6.
Behav Pharmacol ; 32(2&3): 112-122, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32960852

ABSTRACT

Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.


Subject(s)
Aging/physiology , Behavior, Addictive/epidemiology , Substance-Related Disorders/epidemiology , Age Factors , Aged , Aging/pathology , Animals , Female , Humans , Menopause/physiology , Neurodegenerative Diseases/epidemiology , Smoking/epidemiology , Translational Research, Biomedical/organization & administration
7.
Horm Behav ; 118: 104656, 2020 02.
Article in English | MEDLINE | ID: mdl-31862208

ABSTRACT

The influence of estrogens on modifying cognition has been extensively studied, revealing that a wide array of factors can significantly impact cognition, including, but not limited to, subject age, estrogen exposure duration, administration mode, estrogen formulation, stress history, and progestogen presence. Less known is whether long-term, extended exposure to estrogens would benefit or otherwise impact cognition. The present study examined the effects of 17ß-estradiol (E2) exposure for seven months, beginning in late adulthood and continuing into middle age, using a regimen of cyclic exposure (bi-monthly subcutaneous injection of 10 µg E2), or Cyclic+Tonic exposure (bi-monthly subcutaneous injection of 10 µg E2 + Silastic capsules of E2) in ovariectomized female Fischer-344-CDF rats. Subjects were tested on a battery of learning and memory tasks. All groups learned the water radial-arm maze (WRAM) and Morris water maze tasks in a similar fashion, regardless of hormone treatment regimen. In the asymptotic phase of the WRAM, rats administered a Cyclic+Tonic E2 regimen showed enhanced performance when working memory was taxed compared to Vehicle and Cyclic E2 groups. Assessment of spatial memory on object placement and object recognition was not possible due to insufficient exploration of objects; however, the Cyclic+Tonic group showed increased total time spent exploring all objects compared to Vehicle-treated animals. Overall, these data demonstrate that long-term Cyclic+Tonic E2 exposure can result in some long-term cognitive benefits, at least in the spatial working memory domain, in a surgically menopausal rat model.


Subject(s)
Aging/drug effects , Estradiol/administration & dosage , Memory, Short-Term/drug effects , Ovariectomy , Spatial Memory/drug effects , Aging/physiology , Animals , Cognition/drug effects , Dose-Response Relationship, Drug , Drug Administration Schedule , Estradiol/pharmacology , Female , Injections, Subcutaneous , Maze Learning/drug effects , Rats , Rats, Inbred F344
8.
Horm Behav ; 126: 104854, 2020 11.
Article in English | MEDLINE | ID: mdl-32949557

ABSTRACT

17ß-estradiol (E2)-containing hormone therapy is a safe, effective way to alleviate unwanted menopause symptoms. Preclinical research has focused upon the role of E2 in learning and memory using a surgically menopausal rodent model whereby the ovaries are removed. Given that most women retain their reproductive tract and undergo a natural menopause transition, it is necessary to understand how exogenous E2 impacts a structurally intact, but follicle-deplete, system. In the current study, 8 month old female rats were administered the ovatoxin 4-vinylcyclohexene diepoxide (VCD), which accelerates ovarian follicular depletion, to model the human menopause transition. After follicular depletion, at 11 months old, rats were administered Vehicle or tonic E2 treatment for 12 days prior to behavioral evaluation on spatial working and reference memory tasks. Results demonstrated that E2 had both enhancing and impairing effects on taxed working memory depending upon the learning or retention phases of the water radial-arm maze, with no impact on reference memory. Relationships between memory scores and circulating estrogen levels were specific to follicle-depleted rats without E2 treatment. Collectively, findings demonstrate the complexity of E2 administration in a follicle-depleted background, with cognitive effects specific to working memory; furthermore, E2 administration altered circulating hormonal milieu and relationships between hormone profiles and memory. In sum, menopausal etiology impacts the parameters of E2 effects on cognition, complementing prior work with other estrogen compounds. Deciphering estrogenic actions in a system wherein the reproductive tract remains intact with follicle-depleted ovaries, thus modeling the majority or menopausal women, is critical for translational perspectives.


Subject(s)
Aging/drug effects , Estradiol/pharmacology , Memory/drug effects , Ovarian Reserve/drug effects , Spatial Learning/drug effects , Aging/physiology , Aging/psychology , Animals , Cognition/drug effects , Cyclohexenes , Female , Maze Learning/drug effects , Memory, Short-Term/drug effects , Menopause/drug effects , Menopause/psychology , Models, Animal , Ovarian Follicle/cytology , Ovarian Follicle/drug effects , Ovary/cytology , Ovary/drug effects , Rats , Rats, Inbred F344 , Vinyl Compounds
9.
Addict Biol ; 25(1): e12711, 2020 01.
Article in English | MEDLINE | ID: mdl-30734439

ABSTRACT

Women report greater craving during certain phases of the menstrual cycle. As well, research indicates that pharmacotherapies for smoking may be less efficacious in women compared with men, which may be due to interactions with natural fluctuations in ovarian hormone levels. N-Acetylcysteine (NAC) is a glutamatergic compound that has shown some efficacy in treating substance use disorders and aids in the prevention of relapse. However, it is unclear whether NAC has sex-specific effectiveness for nicotine relapse treatment. Given that NAC has shown promise to reduce nicotine reinstatement in preclinical models using male rats, the exploration of potential sex differences in the efficacy of NAC is warranted. Using a rat model, we first investigated the ability of NAC treatment (100 mg/kg, ip) during nicotine withdrawal with extinction training to reduce cue-induced nicotine seeking in male and female rats. Next, we assessed whether NAC's effects were estrous cycle-dependent for female rats. Results show that following NAC treatment during extinction, reinstatement of nicotine seeking was significantly decreased in males but not females, indicating a sex-specific effect of NAC. Furthermore, for females, both vehicle- and NAC-treated groups significantly reinstated nicotine-seeking behavior compared with extinction, regardless of estrous cycle phase. These results suggest that NAC is inefficacious in reducing nicotine relapse in females regardless of estrous cycle phase at the dose evaluated here. These collective findings could have important clinical implications for use and efficacy of NAC as a pharmacotherapy for freely cycling women smokers.


Subject(s)
Acetylcysteine/pharmacology , Cues , Drug-Seeking Behavior/drug effects , Tobacco Use Disorder/drug therapy , Animals , Craving/drug effects , Disease Models, Animal , Estrous Cycle , Extinction, Psychological , Female , Free Radical Scavengers/pharmacology , Male , Nicotine , Rats , Rats, Sprague-Dawley , Sex Factors , Substance Withdrawal Syndrome/physiopathology , Tobacco Use Disorder/physiopathology
10.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R912-R920, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31663769

ABSTRACT

Changes in pituitary-ovarian hormones across the menopausal transition have multiple physiological consequences. However, little is known about how the major types of postmenopausal hormone therapy (HT) affect pituitary-ovarian hormonal relationships. This study evaluated these relationships in recently menopausal women (52.45 ± 2.49 yr of age) in the Kronos Early Estrogen Prevention Study (KEEPS) who were compliant to randomized, double-blinded treatment with oral conjugated equine estrogen (o-CEE; n = 109), transdermal 17ß-estradiol (t-E2; n = 107), or placebo (n = 146). Androstenedione, testosterone, 17ß-estradiol, estrone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were measured in serum before (baseline) and 48 mo after randomization to treatment. Descriptive summaries of hormone levels were performed, and multiple regression analyses were used to examine the effects of o-CEE, t-E2, and placebo on these hormone levels at 48 mo, adjusting for baseline levels. A network analysis examined the covariance of changes in hormone levels over the 48 mo within treatment groups. As expected, at 48 mo of treatment, hormone levels differed between women in the two active treatment groups compared with placebo, and network analysis indicated stronger relationships among hormone levels in the t-E2 and o-CEE groups compared with placebo. Associations among testosterone, 17ß-estradiol, FSH, and LH differed between the o-CEE group compared with t-E2 and placebo groups. Thus, two common HT regimens differentially alter pituitary-ovarian hormone levels, altering feedback cycles and interhormonal associations in recently menopausal women. These interactions provide the basis for future studies investigating the impact of hormonal modulation of aging, including cognitive decline in women.


Subject(s)
Estradiol/pharmacology , Menopause/physiology , Ovary/drug effects , Pituitary Gland/drug effects , Administration, Cutaneous , Double-Blind Method , Estradiol/administration & dosage , Estrogen Replacement Therapy , Estrogens/administration & dosage , Estrogens/pharmacology , Female , Follicle Stimulating Hormone/blood , Humans , Luteinizing Hormone/blood , Middle Aged , Ovary/physiology , Pituitary Gland/physiology , Progesterone/blood
11.
J Biol Chem ; 292(6): 2266-2277, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28003364

ABSTRACT

Stromal interaction molecule 1 (STIM1) regulates store-operated Ca2+ entry (SOCE) and other ion channels either as an endoplasmic reticulum Ca2+-sensing protein or when present in the plasma membrane. However, the role of STIM1 in insulin-secreting ß-cells is unresolved. We report that lowering expression of STIM1, the gene that encodes STIM1, in insulin-secreting MIN6 ß-cells with RNA interference inhibits SOCE and ATP-sensitive K+ (KATP) channel activation. The effects of STIM1 knockdown were reversed by transduction of MIN6 cells with an adenovirus gene shuttle vector that expressed human STIM1 Immunoprecipitation studies revealed that STIM1 binds to nucleotide binding fold-1 (NBF1) of the sulfonylurea receptor 1 (SUR1) subunit of the KATP channel. Binding of STIM1 to SUR1 was enhanced by poly-lysine. Our data indicate that SOCE and KATP channel activity are regulated by STIM1. This suggests that STIM1 is a multifunctional signaling effector that participates in the control of membrane excitability and Ca2+ signaling events in ß-cells.


Subject(s)
Calcium Channels/physiology , Islets of Langerhans/metabolism , KATP Channels/physiology , Neoplasm Proteins/physiology , Stromal Interaction Molecule 1/physiology , Animals , Calcium Signaling , Cell Line , Gene Knockdown Techniques , Humans , Ion Transport , Mice , Neoplasm Proteins/genetics , Stromal Interaction Molecule 1/genetics
12.
Int J Mol Sci ; 19(5)2018 May 19.
Article in English | MEDLINE | ID: mdl-29783744

ABSTRACT

Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca2+ signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca2+-binding protein, with Ca2+-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of Stim2 expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the Stim2 null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of Stim2 expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca2+ store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the Stim2 knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca2+ store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.


Subject(s)
Calcium Signaling , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism , 3T3 Cells , Animals , Calcium/metabolism , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Membrane Microdomains/metabolism , Mice , Neoplasm Proteins/genetics , ORAI1 Protein/metabolism , Protein Binding , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 2/genetics
13.
Horm Behav ; 87: 96-114, 2017 01.
Article in English | MEDLINE | ID: mdl-27793768

ABSTRACT

Cognitive changes that occur during mid-life and beyond are linked to both aging and the menopause transition. Studies in women suggest that the age at menopause onset can impact cognitive status later in life; yet, little is known about memory changes that occur during the transitional period to the postmenopausal state. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of perimenopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the trajectory of cognitive change across time with normal aging and aging with transitional menopause via VCD-induced follicular depletion, as well as to evaluate whether age at the onset of follicular depletion plays a role in cognitive outcomes. Animals experiencing the onset of menopause at a younger age exhibited impaired spatial memory early in the transition to a follicle-deplete state. Additionally, at the mid- and post- follicular depletion time points, VCD-induced follicular depletion amplified an age effect on memory. Overall, these findings suggest that age at the onset of menopause is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study illustrates how age at menopause onset might impact cognition in menopausal women, and provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition period. Hormone therapy during this critical juncture might be especially efficacious at attenuating age- and menopause- related cognitive decline, producing healthy brain aging profiles in women who retain their ovaries throughout their lifespan.


Subject(s)
Aging/psychology , Cognition/physiology , Menopause/psychology , Ovarian Reserve/physiology , Ovary/physiology , Spatial Memory/physiology , Animals , Cyclohexenes/pharmacology , Female , Menopause/drug effects , Ovarian Follicle/cytology , Ovarian Follicle/drug effects , Ovarian Reserve/drug effects , Ovary/cytology , Ovary/drug effects , Rats , Rats, Inbred F344 , Spatial Memory/drug effects , Vinyl Compounds/pharmacology
14.
Horm Behav ; 74: 86-104, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26122297

ABSTRACT

This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.


Subject(s)
Estrogens/pharmacology , Longevity/drug effects , Sex Differentiation/drug effects , Animals , Brain/drug effects , Brain/physiology , Cognition/drug effects , Cognition/physiology , Dose-Response Relationship, Drug , Female , Humans , Longevity/physiology , Male , Menopause/drug effects , Phenotype , Postmenopause/drug effects , Sex Differentiation/physiology , Sexual Behavior/drug effects , Sexual Behavior/physiology , Time Factors
15.
J Appl Lab Med ; 9(2): 251-261, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38029448

ABSTRACT

BACKGROUND: Detection of anticyclic citrullinated peptide antibodies (anti-CCP) and rheumatoid factors (RF) in sera support the diagnosis of rheumatoid arthritis (RA); however, these markers are not detected in about 20% of RA patients. More recently, antibodies against carbamylated proteins (anti-CarP) have emerged with implications for preclinical RA diagnosis. The objective of this study was to assess the clinical performance of anti-CarP and correlate with disease severity in routine clinical practice. METHODS: Retrospective chart review of 331 subjects submitted for RA panel serology: 136 clinically defined RA-positive and 195 RA-negative patients. Fifty additional individuals were recruited for healthy controls. Patients' sera were tested for anti-CCP, anti-CarP, and RF antibodies. Clinical performance characteristics were evaluated for anti-CarP individually and in combination with anti-CCP and RF. Documented erosions and synovitis were correlated with anti-CarP positivity. RESULTS: Anti-CarP had a clinical sensitivity and specificity of 27% and 94%, respectively, for established RA. This sensitivity was lower than anti-CCP (79%) and RF (85%). The specificity of anti-CarP was similar to anti-CCP (93%) and higher than RF (69%). Anti-CarP in combination with anti-CCP and RF increased specificity (100%) but decreased sensitivity (21%). There was no correlation of anti-CarP positivity with presence of bone erosions; however, there was an increase in anti-CarP positivity among patients with synovitis. CONCLUSIONS: Anti-CarP demonstrates high specificity in diagnosis of established RA but lacks clinical sensitivity. In combination, anti-CarP does not improve clinical performance of anti-CCP and RF but may be useful in anti-CCP negative patients and in identifying patients with more active disease.


Subject(s)
Arthritis, Rheumatoid , Synovitis , Humans , Anti-Citrullinated Protein Antibodies , Retrospective Studies , Arthritis, Rheumatoid/diagnosis , Rheumatoid Factor
16.
J Neurosci ; 32(25): 8532-44, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22723693

ABSTRACT

M(1) muscarinic acetylcholine receptors (mAChRs) represent a viable target for treatment of multiple disorders of the central nervous system (CNS) including Alzheimer's disease and schizophrenia. The recent discovery of highly selective allosteric agonists of M(1) receptors has provided a major breakthrough in developing a viable approach for the discovery of novel therapeutic agents that target these receptors. Here we describe the characterization of two novel M(1) allosteric agonists, VU0357017 and VU0364572, that display profound differences in their efficacy in activating M(1) coupling to different signaling pathways including Ca(2+) and ß-arrestin responses. Interestingly, the ability of these agents to differentially activate coupling of M(1) to specific signaling pathways leads to selective actions on some but not all M(1)-mediated responses in brain circuits. These novel M(1) allosteric agonists induced robust electrophysiological effects in rat hippocampal slices, but showed lower efficacy in striatum and no measureable effects on M(1)-mediated responses in medial prefrontal cortical pyramidal cells in mice. Consistent with these actions, both M(1) agonists enhanced acquisition of hippocampal-dependent cognitive function but did not reverse amphetamine-induced hyperlocomotion in rats. Together, these data reveal that M(1) allosteric agonists can differentially regulate coupling of M(1) to different signaling pathways, and this can dramatically alter the actions of these compounds on specific brain circuits important for learning and memory and psychosis.


Subject(s)
Behavior, Animal/drug effects , Benzamides/pharmacology , Biphenyl Compounds/pharmacology , Brain/drug effects , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M1/agonists , Animals , Arrestins/metabolism , CHO Cells , Calcium/metabolism , Cell Line , Corpus Striatum/physiology , Cricetinae , Cricetulus , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Space/physiology , Fear/psychology , Gene Expression Profiling , Hippocampus/physiology , Humans , Male , Maze Learning , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Phosphorylation , Prefrontal Cortex/physiology , Rats , Rats, Sprague-Dawley
17.
J Vis Exp ; (201)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37982512

ABSTRACT

The pancreatic islets of Langerhans, which are small 3D collections of specialized endocrine and supporting cells interspersed throughout the pancreas, have a central role in the control of glucose homeostasis through the secretion of insulin by beta cells, which lowers blood glucose, and glucagon by alpha cells, which raises blood glucose. Intracellular signaling pathways, including those mediated by cAMP, are key for regulated alpha and beta cell hormone secretion. The 3D islet structure, while essential for coordinated islet function, presents experimental challenges for mechanistic studies of the intracellular signaling pathways in primary human islet cells. To overcome these challenges and limitations, this protocol describes an integrated live-cell imaging and microfluidic platform using primary human pseudoislets generated from donors without diabetes that resemble native islets in their morphology, composition, and function. These pseudoislets are size-controlled through the dispersion and reaggregation process of primary human islet cells. In the dispersed state, islet cell gene expression can be manipulated; for example, biosensors such as the genetically encoded cAMP biosensor, cADDis, can be introduced. Once formed, pseudoislets expressing a genetically encoded biosensor, in combination with confocal microscopy and a microperifusion platform, allow for the synchronous assessment of fluorescent biosensor dynamics and alpha and beta cell hormone secretory profiles to provide more insight into cellular processes and function.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Humans , Blood Glucose , Biological Transport , Insulin , Coloring Agents
18.
Behav Brain Res ; 448: 114442, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37085118

ABSTRACT

Progestogens are a key component of menopausal hormone therapies. While some progestogens can be detrimental to cognition, there is preclinical evidence that progestogens with a strong progesterone-receptor affinity benefit some molecular mechanisms believed to underlie cognitive function. Thus, a progestin that maximizes progesterone-receptor affinity and minimizes affinities to other receptors may be cognitively beneficial. We evaluated segesterone-acetate (SGA), a 19-norprogesterone derivative with a strong progesterone-receptor affinity and no androgenic or estrogenic-receptor activity, hypothesizing that it would enhance cognition. Middle-aged rats underwent Sham or Ovariectomy (Ovx) surgery followed by administration of medroxyprogesterone-acetate (MPA; used as a positive control as we have previously shown MPA-induced cognitive deficits), SGA (low or high dose), or vehicle (one Sham and one Ovx group). Spatial working and reference memory, delayed retention, and anxiety-like behavior were assessed, as were memory- and hormone- related protein assays within the frontal cortex, dorsal hippocampus, and entorhinal cortex. Low-dose SGA impaired spatial working memory, while high-dose SGA had a more extensive detrimental impact, negatively affecting spatial reference memory and delayed retention. Replicating previous findings, MPA impaired spatial reference memory and delayed retention. SGA, but not MPA, alleviated Ovx-induced anxiety-like behaviors. On two working memory measures, IGF-1R expression correlated with better working memory only in rats without hormone manipulation; any hormone manipulation or combination of hormone manipulations used herein altered this relationship. These findings suggest that SGA impairs spatial cognition after surgical menopause, and that surgical menopause with or without progestin administration disrupts relationships between a growth factor critical to neuroplasticity.


Subject(s)
Progesterone , Progestins , Animals , Female , Rats , Acetates , Anxiety/drug therapy , Intercellular Signaling Peptides and Proteins , Menopause/physiology , Ovariectomy , Progesterone/pharmacology , Progestins/pharmacology
19.
Eur J Neurosci ; 36(8): 3086-95, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22758646

ABSTRACT

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle-depleted ovaries. In two independent studies, in rodents that had undergone ovarian follicular depletion, we found that higher endogenous serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that higher androstenedione levels impair memory. The current study directly tested this hypothesis, examining the cognitive effects of exogenous androstenedione administration in rodents. Middle-aged ovariectomised rats received vehicle or one of two doses of androstenedione. Rats were tested on a spatial working and reference memory maze battery including the water-radial arm maze, Morris water maze (MM) and delay match-to-sample task. Androstenedione at the highest dose impaired reference memory as well as the ability to maintain performance as memory demand was elevated. This was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. We measured glutamic acid decarboxylase (GAD) protein in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system relates to androstenedione-induced memory impairments. Results showed that higher entorhinal cortex GAD levels were correlated with worse MM performance, irrespective of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle-depleted ovary, is detrimental to working memory, reference memory and memory retention. Furthermore, while spatial reference memory performance might be related to the GABAergic system, it does not appear to be altered with androstenedione administration, at least at the doses used in the current study.


Subject(s)
Androstenedione/blood , Memory Disorders/blood , Animals , Entorhinal Cortex/metabolism , Female , Glutamate Decarboxylase/metabolism , Maze Learning , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory, Short-Term , Menopause/blood , Menopause/physiology , Ovariectomy , Rats , Rats, Inbred F344 , Retention, Psychology
20.
Horm Behav ; 62(1): 1-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22522079

ABSTRACT

CEE (conjugated equine estrogens) is the most widely prescribed estrogen-only menopausal hormone therapy in the United States, and is comprised of over 50% estrone (E1) sulfate. Following CEE administration, E1 is the principal circulating estrogen. However, the cognitive and neurobiological effects of E1 in a middle-aged rodent model have not yet been evaluated. We assessed cognitive effects of continuous E1 treatment in middle-aged surgically menopausal rats using a maze battery. We also quantified number of choline acetyltransferase-immunoreactive (ChAT-IR) neurons in distinct basal forebrain regions known in earlier studies in to be impacted by the most potent naturally-circulating estrogen in rodents and women, 17ß-estradiol (17ß-E2), as well as CEE. On the spatial working memory delayed-match-to-sample water maze, the highest E1 dose impaired memory performance during acquisition and after delay challenge. E1 did not impact ChAT-IR neuron number in the medial septum (MS) or horizontal/vertical diagonal bands. In a comparison study, 17ß-E2 increased MS ChAT-IR neuron number. Findings indicate that E1 negatively impacts spatial working memory and memory retention, and does not increase ChAT-IR neuron number in basal forebrain, as does 17ß-E2. Thus, data from prior studies suggest that 17ß-E2 and CEE can enhance cognition and increase number of ChAT-IR basal forebrain neurons, while here we show that E1 does not induce these effects. Findings from preclinical basic science studies can inform the design of specific combinations of estrogens that could be beneficial to the brain and cognition. Accumulating data suggest that E1 is not likely to be among these key beneficial estrogens.


Subject(s)
Cholinergic Neurons/drug effects , Estrogens, Conjugated (USP)/adverse effects , Estrone/adverse effects , Memory/drug effects , Prosencephalon/drug effects , Animals , Estradiol/pharmacology , Estrogen Replacement Therapy/adverse effects , Estrogens/administration & dosage , Estrogens/adverse effects , Estrogens, Conjugated (USP)/administration & dosage , Estrone/administration & dosage , Female , Maze Learning/drug effects , Menopause/drug effects , Ovariectomy , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL