Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Ann Plast Surg ; 91(1): 154-158, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37450875

ABSTRACT

BACKGROUND: Nonvascularized bone grafting represents a practical method of mandibular reconstruction. However, the destructive effects of radiotherapy on native bone preclude the use of nonvascularized bone grafts in head and neck cancer patients. Adipose-derived stem cells have been shown to enhance bone healing and regeneration in numerous experimental models. The purpose of this study was to determine the impact of adipose-derived stem cells on nonvascularized bone graft incorporation in a murine model of irradiated mandibular reconstruction. METHODS: Thirty isogenic rats were randomly divided into 3 groups: nonvascularized bone graft (control), radiation with nonvascularized bone graft (XRT), and radiation with nonvascularized bone graft and adipose-derived stem cells (ASC). Excluding the control group, all rats received a human-equivalent dose of radiation. All groups underwent mandibular reconstruction of a critical-sized defect with a nonvascularized bone graft from the contralateral hemimandible. After a 60-day recovery period, graft incorporation and bone mineralization were compared between groups. RESULTS: Compared with the control group, the XRT group demonstrated significantly decreased graft incorporation (P = 0.011), bone mineral density (P = 0.005), and bone volume fraction (P = 0.001). Compared with the XRT group, the ASC group achieved a significantly increased graft incorporation (P = 0.006), bone mineral density (P = 0.005), and bone volume fraction (P = 0.013). No significant differences were identified between the control and ASC groups. CONCLUSIONS: Adipose-derived stem cells enhance nonvascularized bone graft incorporation in the setting of human-equivalent radiation.


Subject(s)
Bone Transplantation , Mandible , Humans , Mice , Rats , Animals , Disease Models, Animal , Bone Transplantation/methods , Mandible/surgery , Adipocytes , Stem Cells
2.
Ann Plast Surg ; 89(4): 459-464, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36149985

ABSTRACT

BACKGROUND: Mesenchymal stem cells have immense potential in applications of bone healing and regeneration. However, few studies have evaluated the therapeutic efficacy of adipose-derived stem cells (ASCs) and bone marrow stromal cells (BMSCs) in irradiated bone. The purpose of this study is to compare the ability of ASCs versus BMSCs to enhance healing outcomes in a murine model of irradiated mandibular fracture repair. METHODS: Forty-eight isogenic male Lewis rats underwent radiation therapy followed by mandibular osteotomy with intraoperative placement of either ASCs or BMSCs. Animals were killed on postoperative day 40. Mandibles were analyzed for union rate, biomechanical strength, vascularity, and mineralization. Groups were compared at P < 0.05 significance. RESULTS: The ASC and BMSC groups demonstrated 92% and 75% union rates. Compared with the BMSC group, the ASC group demonstrated a trending increase in maximum load ( P = 0.095) on biomechanical strength analysis and a significant increase in vessel number ( P = 0.001), vessel thickness ( P = 0.035), and vessel volume fraction ( P = 0.007) on micro-computed tomography angiography analysis. No significant differences in bone mineralization were identified on micro-computed tomography analysis. CONCLUSION: This study demonstrates the superior therapeutic efficacy of ASCs over BMSCs in irradiated fracture healing as evidenced by union rate, vascular morphometry, and a trend in biomechanical strength. We posit that the robust vascular response induced by ASCs better recapitulates the sequence and synchronicity of physiologic bone healing compared with BMSCs, thereby improving the reliability of irradiated fracture repair.


Subject(s)
Mandibular Fractures , Mesenchymal Stem Cells , Adipose Tissue , Animals , Bone Marrow Cells , Male , Mesenchymal Stem Cells/physiology , Mice , Rats , Rats, Inbred Lew , Reproducibility of Results , Stem Cells , Stromal Cells , X-Ray Microtomography
3.
Ann Plast Surg ; 85(5): 546-552, 2020 11.
Article in English | MEDLINE | ID: mdl-32187064

ABSTRACT

BACKGROUND: Radiation therapy (XRT) induced dermal injury disrupts type I collagen architecture. This impairs cutaneous viscoelasticity, which may contribute to the high rate of complications in expander-based breast reconstruction with adjuvant XRT. The objective of this study was to further elucidate the mechanism of radiation-induced dermal injury and to determine if amifostine (AMF) or deferoxamine (DFO) mitigates type I collagen injury in an irradiated murine model of expander-based breast reconstruction. METHODS: Female Lewis rats (n = 20) were grouped: expander (control), expander-XRT (XRT), expander-XRT-AMF (AMF), and expander-XRT-DFO (DFO). Expanders were surgically placed. All XRT groups received 28 Gy of XRT. The AMF group received AMF 30 minutes before XRT, and the DFO group used a patch for delivery 5 days post-XRT. After a 20-day recovery period, skin was harvested. Atomic force microscopy and Raman spectroscopy were performed to evaluate type I collagen sheet organization and tissue compositional properties, respectively. RESULTS: Type I collagen fibril disorganization was significantly increased in the XRT group compared with the control (83.8% vs 22.4%; P = 0.001). Collagen/matrix ratios were greatly reduced in the XRT group compared with the control group (0.49 ± 0.09 vs 0.66 ± 0.09; P = 0.017). Prophylactic AMF demonstrated a marked reduction in type I collagen fibril disorganization on atomic force microscopy (15.9% vs 83.8%; P = 0.001). In fact, AMF normalized type I collagen organization in irradiated tissues to the level of the nonirradiated control (P = 0.122). Based on Raman spectroscopy, both AMF and DFO demonstrated significant differential protective effects on expanded-irradiated tissues. Collagen/matrix ratios were significantly preserved in the AMF group compared with the XRT group (0.49 ± 0.09 vs 0.69 ± 0.10; P = 0.010). ß-Sheet/α-helix ratios were significantly increased in the DFO group compared with the XRT group (1.76 ± 0.03 vs 1.86 ± 0.06; P = 0.038). CONCLUSIONS: Amifostine resulted in a significant improvement in type I collagen fibril organization and collagen synthesis, whereas DFO mitigated abnormal changes in collagen secondary structure in an irradiated murine model of expander-based breast reconstruction. These therapeutics offer the ability to retain the native microarchitecture of type I collagen after radiation. Amifostine and DFO may offer clinical utility to reduce radiation induced dermal injury, potentially decreasing the high complication rate of expander-based breast reconstruction with adjuvant XRT and improving surgical outcomes.


Subject(s)
Breast Neoplasms , Mammaplasty , Radiation-Protective Agents , Animals , Disease Models, Animal , Female , Humans , Mice , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Tissue Expansion Devices
4.
Ann Plast Surg ; 85(1): 83-88, 2020 07.
Article in English | MEDLINE | ID: mdl-32187072

ABSTRACT

Adipose-derived stem cells mitigate deleterious effects of radiation on bone and enhance radiated fracture healing by replacing damaged cells and stimulating angiogenesis. However, adipose-derived stem cell harvest and delivery techniques must be refined to comply with the US Food and Drug Administration restrictions on implantation of cultured cells into human subjects prior to clinical translation. The purpose of this study is to demonstrate the preservation of efficacy of adipose-derived stem cells to remediate the injurious effects of radiation on fracture healing utilizing a novel harvest and delivery technique that avoids the need for cell culture. Forty-four Lewis rats were divided into 4 groups: fracture control (Fx), radiated fracture control (XFx), radiated fracture treated with cultured adipose-derived stem cells (ASC), and radiated fracture treated with noncultured minimally processed adipose-derived stem cells (MP-ASC). Excluding the Fx group, all rats received a fractionated human-equivalent dose of radiation. All groups underwent mandibular osteotomy with external fixation. Following sacrifice on postoperative day 40, union rate, mineralization, and biomechanical strength were compared between groups at P < 0.05 significance. Compared with Fx controls, the XFx group demonstrated decreased union rate (100% vs 20%), bone volume fraction (P = 0.003), and ultimate load (P < 0.001). Compared with XFx controls, the MP-ASC group tripled the union rate (20% vs 60%) and demonstrated statistically significant increases in both bone volume fraction (P = 0.005) and ultimate load (P = 0.025). Compared with the MP-ASC group, the ASC group showed increased union rate (60% vs 100%) and no significant difference in bone volume fraction (P = 0.936) and ultimate load (P = 0.202). Noncultured minimally processed adipose-derived stem cells demonstrate the capacity to improve irradiated fracture healing without the need for cell proliferation in culture. Further refinement of the cell harvest and delivery techniques demonstrated in this report will enhance the ability of noncultured minimally processed adipose-derived stem cells to improve union rate and bone quality, thereby optimizing clinical translation.


Subject(s)
Adipocytes , Fracture Healing , Adipose Tissue , Animals , Cells, Cultured , Rats , Rats, Inbred Lew , Stem Cells
5.
Ann Plast Surg ; 85(4): 424-429, 2020 10.
Article in English | MEDLINE | ID: mdl-31850964

ABSTRACT

BACKGROUND: Indications for adjuvant radiation therapy (XRT) in breast cancer have expanded. Although highly effective, XRT damages surrounding tissues and vasculature, often resulting in delayed or compromised breast reconstruction. Thus, effective yet safe methods of radiation injury prophylaxis would be desirable. Amifostine is a Food and Drug Administration-approved radioprotectant; however, concerns about its potential to also protect cancer remain. The purpose of this study was to evaluate the oncologic safety of amifostine (AMF) in vitro and determine its effect on human breast cancer cells in the setting of XRT. METHODS: One ER+/PR+/Her2- (MCF-7) and two ER-/PR-Her2- (MDA-MB-231, MDA-MB-468) breast cancer cell lines were investigated. Female fibroblasts were used as controls. Cells were treated with WR-1065, the active metabolite of AMF, 20 minutes before 0Gy, 10Gy, or 20Gy XRT. Live and dead cells were quantified; percent cell death was calculated. RESULTS: WR-1065 treatment significantly preserved viability and reduced healthy female fibroblasts death after XRT compared with untreated controls. All three breast cancer cells lines exhibited radiosensitivity with substantial cell death. Cancer cells retained their radiosensitivity despite WR-1065 pretreatment, achieving the same degree of cell death as untreated controls. CONCLUSIONS: This study demonstrated the proficiency of AMF to selectively protect healthy cells from XRT while breast cancer cells remained radiosensitive. These results support the oncologic safety of AMF in breast cancer in vitro. Further investigation is now warranted in vivo to ascertain the translational potential of using AMF as a radioprotectant to improve breast reconstruction after radiation treatment.


Subject(s)
Amifostine , Breast Neoplasms , Mammaplasty , Radiation Injuries , Radiation-Protective Agents , Amifostine/pharmacology , Amifostine/therapeutic use , Animals , Breast Neoplasms/radiotherapy , Female , Humans , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Rats , Rats, Sprague-Dawley
6.
J Craniofac Surg ; 30(3): 730-735, 2019.
Article in English | MEDLINE | ID: mdl-30817525

ABSTRACT

Mesenchymal stem cells (MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes, each of which is important for musculoskeletal tissue regeneration and repair. Reconstruction and healing of bony defects remains a major clinical challenge. Even as surgical practices advance, some severe cases of bone loss do not yield optimal recovery results. New techniques involving implantation of stem cells and tissue-engineered scaffolds are being developed to help improve bone and cartilage repair. The invasiveness and low yield of harvesting MSCs from the bone marrow (BMSCs) has led to the investigation of alternatives, including adipose-derived mesenchymal stem cells (ASCs). A review of the literature yielded several studies concerning the use of BMSCs and ASCs for the treatment of bone defects in both in vitro and in vivo models. Although both ASCs and BMSCs have demonstrated bone regenerative capabilities, BMSCs have outperformed ASCs in vitro. Despite these in vitro study findings, in vivo study results remain variable. Analysis of the literature seems to conclude there is no significant difference between bone regeneration using ASCs or BMSCs in vivo. Improved study design and standardization may enhance the application of these studies to patient care in the clinical setting.


Subject(s)
Bone Regeneration/physiology , Mesenchymal Stem Cells/physiology , Adipocytes/physiology , Adipose Tissue , Animals , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/trends , Cell Differentiation/physiology , Chondrocytes/physiology , Forecasting , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Models, Animal , Osteoblasts/physiology , Tissue Scaffolds
7.
J Craniofac Surg ; 30(2): 611-617, 2019.
Article in English | MEDLINE | ID: mdl-30531286

ABSTRACT

Nonvascularized bone grafts (NBGs) represent a practical method of mandibular reconstruction that is precluded in head and neck cancer patients by the destructive effects of radiotherapy. Advances in tissue-engineering may restore NBGs as a viable surgical technique, but expeditious translation demands a small-animal model that approximates clinical practice. This study establishes a murine model of irradiated mandibular reconstruction using a segmental iliac crest NBG for the investigation of imperative bone healing strategies. Twenty-seven male isogenic Lewis rats were divided into 2 groups; control bone graft and irradiated bone graft (XBG). Additional Lewis rats served as graft donors. The XBG group was administered a fractionated dose of 35Gy. All rats underwent reconstruction of a segmental, critical-sized defect of the left hemi-mandible with a 5 mm NBG from the iliac crest, secured by a custom radiolucent plate. Following a 60-day recovery period, hemi-mandibles were evaluated for bony union, bone mineralization, and biomechanical strength (P < 0.05). Bony union rates were significantly reduced in the XBG group (42%) compared with controls (80%). Mandibles in the XBG group further demonstrated substantial radiation injury through significant reductions in all metrics of bone mineralization and biomechanical strength. These observations are consistent with the clinical sequelae of radiotherapy that limit NBGs to nonirradiated patients. This investigation provides a clinically relevant, quantitative model in which innovations in tissue engineering may be evaluated in the setting of radiotherapy to ultimately provide the advantages of NBGs to head and neck cancer patients and reconstructive surgeons.


Subject(s)
Bone Transplantation/methods , Mandible/surgery , Plastic Surgery Procedures/methods , Animals , Calcification, Physiologic , Disease Models, Animal , Head and Neck Neoplasms/surgery , Male , Rats
8.
J Oral Maxillofac Surg ; 76(12): 2660-2668, 2018 12.
Article in English | MEDLINE | ID: mdl-29883588

ABSTRACT

PURPOSE: Despite the relative surgical ease and reduced donor-site morbidity of distraction osteogenesis (DO) in comparison with free tissue transfer, DO is currently precluded as a reconstructive option for head and neck cancer (HNC) patients because of the destructive effects of radiotherapy (XRT). This study investigates the ability of a novel combined therapy (CT) of radioprotective amifostine (AMF) and angiogenic deferoxamine (DFO) to mitigate XRT-induced bone injury in a murine model of DO. MATERIALS AND METHODS: Thirty male Sprague-Dawley rats were divided into 5 groups: DO (primary control), XRT (secondary control), AMF, DFO, and CT. With the exclusion of the DO group, all rats were administered a fractionated, human-equivalent XRT dose of 35 Gy, comparable with 70 Gy administered to HNC patients clinically. All groups underwent mandibular osteotomy and distraction to 5.1 mm. After euthanasia administration on postoperative day 40, the mandibles were sectioned and stained with Gomori trichrome. Osteocyte number, bone volume, and osteoid volume were compared between all groups by analysis of variance (P < .05). RESULTS: All rats survived and were included in the final analysis. The XRT group exhibited substantial bone injury, evidenced by a decreased osteocyte number and bone volume, as well as an increase in immature osteoid volume, compared with DO controls. The AMF, DFO, and CT groups showed significant increases in osteocyte proliferation compared with the XRT group and were not statistically different from the DO group. Notably, the CT group showed remediation of XRT-induced impairment of bone maturation and exhibited significantly greater bone volume and reduced osteoid volume in comparison with all groups. CONCLUSIONS: Combined AMF and DFO treatment showed the capacity to remediate the deleterious effects of XRT, restore cellularity to nonirradiated levels, and surpass all groups in mature bone formation. Although further investigations of AMF and DFO are warranted, this study provides preliminary support for the potential use of DO in HNC patients through pharmaceutical facilitation of irradiated bone healing.


Subject(s)
Amifostine/therapeutic use , Deferoxamine/therapeutic use , Mandible/drug effects , Osteogenesis, Distraction , Radiation Injuries/prevention & control , Radiation-Protective Agents/therapeutic use , Amifostine/pharmacology , Animals , Deferoxamine/pharmacology , Drug Therapy, Combination , Male , Mandible/pathology , Mandible/radiation effects , Mandible/surgery , Radiation Injuries/pathology , Radiation-Protective Agents/pharmacology , Random Allocation , Rats , Rats, Sprague-Dawley , Treatment Outcome
9.
Ann Plast Surg ; 81(5): 604-608, 2018 11.
Article in English | MEDLINE | ID: mdl-30113984

ABSTRACT

BACKGROUND: Breast cancer is most commonly managed with a combination of tumor ablation, radiation, and/or chemotherapy. Despite the oncologic benefit of these treatments, the detrimental effect of radiation on surrounding tissue challenges the attainment of ideal breast reconstruction outcomes. The purpose of this study was to determine the ability of topical deferoxamine (DFO) to reduce cutaneous ulceration and collagen disorganization following radiotherapy in a murine model of expander-based breast reconstruction. METHODS: Female Sprague-Dawley rats (n = 15) were divided into 3 groups: control (expander), XRT (expander + radiation), and DFO (expander + radiation + deferoxamine [DFO]). Expanders were placed in a submusculocutaneous plane in the right upper back and ultimately filled to 15 mL. Radiation was administered via a fractionated dose of 28 Gy. Deferoxamine was delivered topically for 10 days following radiation. After a 20-day recovery period, skin ulceration and dermal type I collagen organization were analyzed. RESULTS: Compared with control, the XRT group demonstrated a significant increase in skin ulceration (3.7% vs 43.3%, P = 0.00) and collagen fibril disorganization (26.3% vs 81.8%, P = 0.00). Compared with the XRT group, treatment with topical DFO resulted in a significant reduction in ulceration (43.3% vs 7.0%, P = 0.00) and fibril disorganization (81.8% vs 15.3%, P = 0.00). There were no statistical differences between the control and DFO groups in skin ulceration or collagen disorganization. CONCLUSIONS: This study suggests topical DFO is capable of reducing skin ulceration and type I collagen fibril disorganization following radiotherapy. This novel application of DFO has potential to enhance expander-based breast reconstruction outcomes and improve quality of life for women suffering the devastating effects of breast cancer.


Subject(s)
Back , Deferoxamine , Skin , Animals , Female , Rats , Administration, Topical , Back/surgery , Deferoxamine/administration & dosage , Deferoxamine/pharmacology , Disease Models, Animal , Microscopy, Atomic Force , Random Allocation , Rats, Sprague-Dawley , Skin/drug effects , Skin/radiation effects , Tissue Expansion Devices
10.
Ann Plast Surg ; 80(2): 176-180, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28930778

ABSTRACT

BACKGROUND: Using distraction osteogenesis (DO) to regenerate robust endogenous bone could greatly enhance postoncologic reconstruction of head and neck cancer. However, radiation (XRT) corrosive effects still preclude DO's immense potential. We posit that adjunctive pretreatment with the radioprotectant amifostine (AMF) can optimize wound healing and allow for successful DO with quantifiable enhancements in bony union and strength despite previous surgical bed irradiation. METHODS: Two groups of murine left hemimandibles were exposed to a human equivalent radiation dosage fractionated over 5 daily doses of 7 Gy. AMF-XRT-DO (n = 30) received AMF before radiation, whereas XRT-DO (n = 22) was untreated. All animals underwent left hemimandibular osteotomy and external fixator placement, followed by distraction to a 5.1-mm gap. Left hemimandibles were harvested and mechanically tested for parameters of strength, yield, and breaking load. RESULTS: Radiation-related complications such as severe alopecia were significantly increased in XRT-DO compared with the AMF-treated group (P = 0.001), whereas infection and death were comparable (P = 0.318). Upon dissection, bony defects were grossly visible in XRT-DO distraction gap compared with AMF-XRT-DO, which exhibited significantly more complete unions (P = 0.004). Those results were significantly increased in the specimens prophylactically treated with AMF (yield: 39.41 N vs 21.78 N, P = 0.023; breaking load: 61.74 N vs 34.77 N, P = 0.044; respectively). CONCLUSIONS: Our study revealed that AMF enhances biomechanical strength, regeneration, and bony union after radiation in a murine model of DO. The use of prophylactic AMF in combination with DO offers the promise of an alternative reconstructive option for patients afflicted with head and neck cancer.


Subject(s)
Amifostine/therapeutic use , Mandible/surgery , Osteogenesis, Distraction , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/therapeutic use , Amifostine/pharmacology , Animals , Biomechanical Phenomena , Bone Regeneration/drug effects , Mandible/drug effects , Radiation-Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley
11.
J Craniofac Surg ; 28(4): 915-919, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28207468

ABSTRACT

Inattention to differences between animal strains is a potential cause of irreproducibility of basic science investigations. Accordingly, the authors' laboratory sought to ensure that cross-comparisons of results generated from studies of mandibular physiology utilizing the Sprague Dawley and Lewis rat strains are valid. The authors specifically investigated baseline histomorphometrics, bone mineral density, and biomechanical strength of the unaltered endogenous mandibles of the inbred, isogenic Lewis rat, and the outbred, nonisogenic Sprague Dawley rat to determine if they are indeed equal. The authors hypothesized that little difference would be found within these metrics.The authors' study utilized 20 male Lewis and Sprague Dawley rats, which underwent no manipulation other than final dissection and analysis. Ten rats from each strain underwent bone mineral density and biomechanical strength analysis. The remaining rats underwent histological analysis. Descriptive and bivariate statistics were computed and the P value was set at 0.05.Lewis rats had a significantly greater number of empty lacunae. Sprague Dawley rats exhibited a significantly greater ratio of bone volume-to-total volume, bone mineral density, tissue mineral density, bone volume fraction, and total mineral content. No differences were found during biomechanical testing.This study demonstrates that differences exist between the Lewis and Sprague Dawley rat within unaltered baseline mandibular tissue. However, these differences appear to have limited functional impact, as demonstrated by similar biomechanical strength metrics. Other specific differences not addressed in this manuscript may exist. However, the authors believe that researchers may confidently cross-compare results between the 2 strains, while taking into account the differences found within this study.


Subject(s)
Mandible/anatomy & histology , Mandible/physiology , Animals , Biomechanical Phenomena , Bone Density , Male , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Reproducibility of Results
12.
Cytotherapy ; 18(5): 664-72, 2016 May.
Article in English | MEDLINE | ID: mdl-27059203

ABSTRACT

The purpose of this study is to determine if intraoperatively placed bone marrow stem cells (BMSCs) will permit successful osteocyte and mature bone regeneration in an isogenic murine model of distraction osteogenesis (DO) following radiation therapy (XRT). Lewis rats were split into three groups, DO only (Control), XRT followed by DO (xDO) and XRT followed by DO with intraoperatively placed BMSCs (xDO-BMSC). Coronal sections from the distraction site were obtained, stained and analyzed via statistical analysis with analysis of variance (ANOVA) and subsequent Tukey or Games-Howell post-hoc tests. Comparison of the xDO-BMSC and xDO groups demonstrated significantly improved osteocyte count (87.15 ± 10.19 vs. 67.88 ± 15.38, P = 0.00), and empty lacunae number (2.18 ± 0.79 vs 12.34 ± 6.61, P = 0.00). Quantitative analysis revealed a significant decrease in immature osteoid volume relative to total volume (P = 0.00) and improved the ratio of mature woven bone to immature osteoid (P = 0.02) in the xDO-BMSC compared with the xDO group. No significant differences were found between the Control and xDO-BMSC groups. In an isogenic murine model of DO, BMSC therapy assuaged XRT-induced cellular depletion, resulting in a significant improvement in histological and histomorphometric outcomes.


Subject(s)
Bone Regeneration/physiology , Cell- and Tissue-Based Therapy/methods , Mandible/growth & development , Mesenchymal Stem Cell Transplantation , Osteocytes/cytology , Osteogenesis, Distraction/methods , Animals , Bone Marrow Cells/cytology , Cells, Cultured , Disease Models, Animal , Mandible/radiation effects , Mesenchymal Stem Cells/cytology , Mice , Rats , Rats, Inbred Lew
13.
J Oral Maxillofac Surg ; 74(10): 2055-65, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27206629

ABSTRACT

PURPOSE: The vascularity, bone mineral density distribution, and histomorphometric data between the inbred, isogenic Lewis rat and the outbred, nonisogenic Sprague Dawley rat within mandibular distraction osteogenesis (MDO) were evaluated to allow future researchers to compare the results generated from these 2 animals. We hypothesized that little difference would be found between the 2 strains within these metrics. MATERIALS AND METHODS: We implemented a comparative study between the Lewis and Sprague Dawley rat strains within MDO. The sample was composed of 17 male Lewis and 17 male Sprague Dawley rats that underwent surgical external fixation and distraction. The rats' hemimandibles were distracted to a total distance of 5.1 mm. After 28 days of consolidation, 9 rats from each group underwent bone mineral density distribution analysis. The remaining rats from each group were analyzed for the vascular and histologic metrics. Descriptive and bivariate statistics were computed, and the P value was set at .05. RESULTS: We demonstrated successful MDO in all the rats, with no significant difference found in the histologic or bone mineral density distribution metrics. No significant differences were found in any of the vascular metrics, with the exception of vascular separation, which was not normalized to the mandibular volume (P = .048). CONCLUSIONS: The results of the present study have demonstrated that little dissimilarity exists between the isogenic Lewis and outbred Sprague Dawley models of MDO. Thus, researchers can confidently compare the gross results between the 2 strains, with consideration of the very small differences between the 2 models. For studies that require an isogenic strain, the Lewis rat is an apt surrogate for the Sprague Dawley strain.


Subject(s)
Bone Density , Mandible/surgery , Osteogenesis, Distraction/methods , Animals , Disease Models, Animal , Male , Mandible/diagnostic imaging , Mice , Osteotomy/methods , Rats, Inbred Lew , Rats, Sprague-Dawley , X-Ray Microtomography
14.
Ann Plast Surg ; 77(2): 164-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27070667

ABSTRACT

According to the American Society of Clinical Oncology, in 2012, more than 53,000 new cases of head and neck cancers (HNCs) were reported in the United States alone and nearly 12,000 deaths occurred relating to HNC. Although radiotherapy (XRT) has increased survival, the adverse effects can be unrelenting and their management is rarely remedial. Current treatment dictates surgical mandibular reconstruction using free tissue transfer. These complex operations entail extended hospitalizations and attendant complications often lead to delays in initiation of adjuvant therapy, jeopardizing prognosis as well as quality of life. The creation of new bone by distraction osteogenesis (DO) generates a replacement of deficient tissue from local substrate and could have immense potential therapeutic ramifications. Radiotherapy drastically impairs bone healing, precluding its use as a reconstructive method for HNC. We posit that the deleterious effects of XRT on bone formation could be pharmacologically mitigated. To test this hypothesis, we used a rodent model of DO and treated with amifostine, a radioprotectant, to assuage the XRT-induced injury on new bone formation. Amifostine had a profound salutary effect on bone regeneration, allowing the successful implementation of DO as a reconstructive technique. The optimization of bone regeneration in the irradiated mandible has immense potential for translation from the bench to the bedside, providing improved therapeutic options for patients subjected to XRT.


Subject(s)
Amifostine/pharmacology , Bone Regeneration/drug effects , Mandible/drug effects , Osteogenesis, Distraction , Radiation Injuries/drug therapy , Radiation-Protective Agents/pharmacology , Radiotherapy/adverse effects , Amifostine/administration & dosage , Amifostine/therapeutic use , Animals , Bone Regeneration/radiation effects , Male , Mandible/radiation effects , Mandible/surgery , Radiation-Protective Agents/administration & dosage , Radiation-Protective Agents/therapeutic use , Random Allocation , Rats, Sprague-Dawley
15.
Ann Plast Surg ; 76(5): 494-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26418787

ABSTRACT

BACKGROUND: Postmastectomy radiation causes persistent injury to the breast microvasculature, and the prevailing assumption is that longer delays before breast reconstruction allow for recovery of blood supply. This study uses a murine model to examine the effects of radiation on skin vascularity to help determine when radiation-induced effects on the microvasculature begin to stabilize. STUDY DESIGN: Isogenic Lewis rats were divided into 2 groups: radiation therapy (XRT) (n = 24) and control (n = 24). The XRT rats received a breast cancer therapy human dose-equivalent of radiation to the groin, whereas control rats received no radiation. Animals were sacrificed at 4, 8, 12, and 16 weeks after completion of radiation. The vasculature was injected with Microfil, and groin skin was harvested for radiomorphometric analysis by microcomputed tomography. One-way analysis of variance with post hoc Tukey tests was used to determine significance between groups. RESULTS: Augmentation in vascularity was observed in the XRT group at 4 weeks after radiation compared to the control group (P = 0.045). Vessel number was decreased at 12 weeks (P = 0.002) and at 16 weeks (P = 0.001) in the XRT rats compared to control rats. Vessel separation in the XRT group was higher than that in the control group at 12 weeks (P = 0.009) and 16 weeks (P = 0.001). There was no change in vessel number and separation between weeks 12 and 16. CONCLUSIONS: A period of augmented skin vascularity is seen after radiation injury followed by decreased vascularity which demonstrates stabilization at approximately 12 weeks in this murine model. This model can be used to further study breast flap vascularity and the optimization of the timing of delayed breast reconstruction.


Subject(s)
Mastectomy , Microvessels/radiation effects , Radiation Injuries/etiology , Radiotherapy, Adjuvant/adverse effects , Skin/blood supply , Skin/radiation effects , Animals , Groin , Male , Microvessels/diagnostic imaging , Models, Animal , Radiation Injuries/diagnostic imaging , Random Allocation , Rats , Rats, Inbred Lew , Skin/diagnostic imaging , Time Factors , X-Ray Microtomography
16.
J Bone Miner Metab ; 33(3): 279-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25319554

ABSTRACT

Despite its therapeutic role in head and neck cancer, radiation administration degrades the biomechanical properties of bone and can lead to pathologic fracture and osteoradionecrosis. Our laboratories have previously demonstrated that prophylactic amifostine administration preserves the biomechanical properties of irradiated bone and that Raman spectroscopy accurately evaluates bone composition ex vivo. As such, we hypothesize that Raman spectroscopy can offer insight into the temporal and mechanical effects of both irradiation and amifostine administration on bone to potentially predict and even prevent radiation-induced injury. Male Sprague-Dawley rats (350-400 g) were randomized into control, radiation exposure (XRT), and amifostine pre-treatment/radiation exposure groups (AMF-XRT). Irradiated animals received fractionated 70 Gy radiation to the left hemi-mandible, while AMF-XRT animals received amifostine just prior to radiation. Hemi-mandibles were harvested at 18 weeks after radiation, analyzed via Raman spectroscopy, and compared with specimens previously harvested at 8 weeks after radiation. Mineral (ρ958) and collagen (ρ1665) depolarization ratios were significantly lower in XRT specimens than in AMF-XRT and control specimens at both 8 and 18 weeks. amifostine administration resulted in a full return of mineral and collagen depolarization ratios to normal levels at 18 weeks. Raman spectroscopy demonstrates radiation-induced damage to the chemical composition and ultrastructure of bone while amifostine prophylaxis results in a recovery towards normal, native mineral and collagen composition and orientation. These findings have the potential to impact on clinical evaluations and interventions by preventing or detecting radiation-induced injury in patients requiring radiotherapy as part of a treatment regimen.


Subject(s)
Amifostine/therapeutic use , Spectrum Analysis, Raman/methods , Animals , Collagen/metabolism , Male , Mandible/drug effects , Mandible/metabolism , Mandible/radiation effects , Osteoradionecrosis/drug therapy , Osteoradionecrosis/etiology , Osteoradionecrosis/pathology , Rats , Rats, Sprague-Dawley
17.
J Oral Maxillofac Surg ; 73(12): 2419-28, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26341682

ABSTRACT

PURPOSE: The devastation radiation therapy (XRT) causes to endogenous tissue in patients with head and neck cancer can be a prohibitive obstacle in reconstruction of the mandible, demanding a better understanding of XRT-induced damage and options for reconstruction. This study investigated the cellular damage caused by radiation in an isogenic murine model of mandibular distraction osteogenesis (DO). The authors posited that radiation would result in fewer osteocytes, with increased empty lacunae and immature osteoid. MATERIALS AND METHODS: Twenty Lewis rats were randomly assigned to a DO group (n = 10) or a XRT/DO group (n = 10). These groups underwent an osteotomy and mandibular DO across a 5.1-mm gap. XRT was administered to the XRT/DO group at a fractionated human equivalent dose of 35 Gy before surgery. Animals were sacrificed on postoperative day 40 and mandibles were harvested and sectioned for histologic analysis. RESULTS: Bone that underwent radiation showed a significantly decreased osteocyte count and complementary increase in empty lacunae compared with non-XRT bone (P = .019 and P = .000). In addition, XRT bone exhibited increased immature osteoid and decreased mature woven bone compared with nonradiated bone (P = .001 and P = .003, respectively). Furthermore, analysis of the ratio of immature osteoid to woven bone volume exhibited a significant increase in the XRT bone, further showing the devastating damage from XRT (P = .001). CONCLUSION: These results clearly show the cellular diminution that occurs as a result of radiation. This foundational study provides the groundwork on which to investigate cellular therapies in an immuno-privileged model of mandibular DO.


Subject(s)
Mandible/surgery , Osteogenesis, Distraction , Radiation Injuries/pathology , Animals , Cell Count , Disease Models, Animal , Male , Mandible/pathology , Mandible/radiation effects , Osteocytes/pathology , Osteocytes/radiation effects , Radiation Injuries/surgery , Rats , Rats, Inbred Lew
18.
Microvasc Res ; 95: 143-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25173587

ABSTRACT

INTRODUCTION: Head and neck cancer is a debilitating and disfiguring disease. Although numerous treatment options exist, an array of debilitating side effects accompany them, causing physiological and social problems. Distraction osteogenesis (DO) can avoid many of the pathologies of current reconstructive strategies; however, due to the deleterious effects of radiation on bone vascularity, DO is generally ineffective. This makes investigating the effects of radiation on neovasculature during DO and creating quantifiable metrics to gauge the success of future therapies vital. The purpose of this study was to develop a novel isogenic rat model of impaired vasculogenesis of the regenerate mandible in order to determine quantifiable metrics of vascular injury and associated damage. METHODS: Male Lewis rats were divided into two groups: DO only (n=5) AND Radiation Therapy (XRT)+DO (n=7). Afterwards, a distraction device was surgically implanted into the mandible. Finally, they were distracted a total of 5.1mm. Animals were perfused with a radiopaque casting agent concomitant with euthanasia, and subsequently demineralization, microcomputed tomography, and vascular analysis were performed. RESULTS: Vessel volume fraction, vessel thickness, vessel number, and degree of anisotropy were diminished by radiation. Vessel separation was increased by radiation. CONCLUSION: The DO group experienced vigorous vessel formation during distraction and neovascularization with a clear, directional progression, while the XRT/DO group saw weak vessel formation during distraction and neovascularization. Further studies are warranted to more deeply examine the impairments in osteogenic mechanotransductive pathways following radiation in the murine mandible. This isogenic model provides quantifiable metrics for future studies requiring a controlled approach to immunogenicity.


Subject(s)
Blood Vessels/radiation effects , Cranial Irradiation , Mandible/blood supply , Mandible/radiation effects , Mandible/surgery , Mechanotransduction, Cellular/radiation effects , Neovascularization, Physiologic/radiation effects , Osteogenesis, Distraction/methods , Animals , Blood Vessels/physiopathology , Cranial Irradiation/adverse effects , Male , Mandible/diagnostic imaging , Models, Animal , Osteogenesis, Distraction/adverse effects , Radiotherapy, Adjuvant , Rats, Inbred Lew , Time Factors , X-Ray Microtomography
19.
J Oral Maxillofac Surg ; 72(3): 559-66, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24342580

ABSTRACT

PURPOSE: Radiation is known to decrease osteocyte count and function, leading to bone weakening. A treatment strategy to mitigate these consequences could have immense therapeutic ramifications. The authors previously reported significantly decreased osteocyte count and mineralization capacity in a rat model of fracture healing after radiotherapy. They hypothesized that amifostine (AMF) would preserve osteocyte number and function in this model. MATERIALS AND METHODS: Thirty-six rats were divided into 3 groups: fracture, radiated fracture, and radiated fracture with AMF. Radiated groups underwent human-equivalent radiotherapy to the mandible before fixator placement and mandibular osteotomy. The AMF group received a subcutaneous injection before each dose of radiotherapy. After 40 days, mandibles were harvested for histologic processing. Quantification of osteocyte count (Oc), empty lacunae (EL), and osteoid ratio (osteoid volume [OV] to tissue volume [TV]) was performed and the results were compared using analysis of variance (P < .05). RESULTS: Radiated fractures showed significantly decreased Oc, increased EL, and a decreased capacity to produce new osteoid at the fracture site as measured with OV/TV compared with nonradiated fractures. In mandibles treated with AMF, these metrics were not statistically different than the control, indicating a preservation of osteocyte number and function. CONCLUSIONS: These results support the hypothesis that AMF preserves osteocyte number and function, thereby preventing the pernicious effects of radiotherapy on the cellular environment of fracture healing. Based on these findings, the authors encourage future investigation of this promising therapy for use in the prevention of pathologic fractures and osteoradionecrosis.


Subject(s)
Amifostine/therapeutic use , Fracture Healing/drug effects , Fracture Healing/radiation effects , Osteocytes/drug effects , Osteocytes/radiation effects , Radiation-Protective Agents/therapeutic use , Radiotherapy/adverse effects , Animals , Bone Regeneration/drug effects , Bone Regeneration/radiation effects , Calcification, Physiologic/drug effects , Calcification, Physiologic/radiation effects , Cell Count , Male , Mandibular Osteotomy , Rats , Rats, Sprague-Dawley
20.
J Histotechnol ; : 1-7, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957981

ABSTRACT

H vessels are an essential link in angiogenic-osteogenic coupling and orchestrate the process of bone healing. H vessels are critically deficient in the setting of radiation-induced fractures, which have been reported to occur in up to 25% of patients undergoing radiotherapy. By increasing H-vessel proliferation, Deferoxamine (DFO) revitalizes the physiologic response to skeletal injury and accelerates irradiated fracture repair. H-vessel quantification is therefore an important outcome measure in histologic analysis of bone healing. However, an optimized protocol for staining H vessels in formalin-fixed paraffin-embedded (FFPE) tissue sections has not been reported. With this protocol, we describe a method of staining FFPE bone samples with minimal background fluorescence and high signal-to-noise ratio. We examined mandibular specimens in a rat model of bone healing from a range of fracture conditions, including healthy bone (Fx), irradiated bone (XFx), and irradiated bone with DFO treatment (XFx-DFO). Quantitative analysis revealed a significant increase of H vessels in the XFxDFO group compared to both the Fx and XFx groups. By optimizing immunofluorescent staining of H vessels in FFPE samples across a range of fracture conditions, we offer investigators an efficacious means of producing reliable imaging for quantitative analysis of H vessels in an irradiated fracture callus.

SELECTION OF CITATIONS
SEARCH DETAIL