Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Rev Mol Cell Biol ; 19(9): 594-610, 2018 09.
Article in English | MEDLINE | ID: mdl-29858605

ABSTRACT

Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.


Subject(s)
Cellular Senescence/genetics , Cellular Senescence/physiology , Epigenesis, Genetic/genetics , Stem Cells/physiology , Animals , Epigenomics/methods , Homeostasis/genetics , Homeostasis/physiology , Humans
2.
Cell ; 155(1): 121-34, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074865

ABSTRACT

The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESCs), but its function in these cells is unknown. Through genome-wide analysis of Dnmt3L knockdown in ESCs, we found that Dnmt3L is a positive regulator of methylation at the gene bodies of housekeeping genes and, more surprisingly, is also a negative regulator of methylation at promoters of bivalent genes. Dnmt3L is required for the differentiation of ESCs into primordial germ cells (PGCs) through the activation of the homeotic gene Rhox5. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyltransferases Dnmt3a and Dnmt3b to maintain low methylation levels at the H3K27me3 regions. Thus, in ESCs, Dnmt3L counteracts the activity of de novo DNA methylases to maintain hypomethylation at promoters of bivalent developmental genes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , Animals , Cell Differentiation , DNA Methyltransferase 3A , Enhancer of Zeste Homolog 2 Protein , Germ Cells/metabolism , Histones/metabolism , Homeodomain Proteins/genetics , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/metabolism , Transcription Factors/genetics , DNA Methyltransferase 3B
4.
EMBO J ; 39(13): e104163, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32484994

ABSTRACT

The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra-Bosch-Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss-of-function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria-like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long-term self-renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area-specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.


Subject(s)
COUP Transcription Factor I/metabolism , Neocortex/embryology , Neural Stem Cells/metabolism , Occipital Lobe/embryology , Optic Atrophies, Hereditary/embryology , Parietal Lobe/embryology , Animals , COUP Transcription Factor I/genetics , Disease Models, Animal , Humans , Mice , Neocortex/pathology , Neural Stem Cells/pathology , Occipital Lobe/pathology , Optic Atrophies, Hereditary/genetics , Optic Atrophies, Hereditary/pathology , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Parietal Lobe/pathology
5.
EMBO J ; 38(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30591554

ABSTRACT

Transcription factor TFEB is thought to control cellular functions-including in the vascular bed-primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non-canonical program that controls the cell cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1-S transition by inhibiting the CDK4/Rb pathway. TFEB-deficient cells attempt to compensate for this limitation by increasing VEGFR2 levels at the plasma membrane via microRNA-mediated mechanisms and controlled membrane trafficking. TFEB stimulates expression of the miR-15a/16-1 cluster, which limits VEGFR2 transcript stability and negatively modulates expression of MYO1C, a regulator of VEGFR2 trafficking to the cell surface. Altered levels of miR-15a/16-1 and MYO1C in TFEB-depleted cells cause increased expression of plasma membrane VEGFR2, but in a manner associated with low signaling strength. An endothelium-specific Tfeb-knockout mouse model displays defects in fetal and newborn mouse vasculature caused by reduced endothelial proliferation and by anomalous function of the VEGFR2 pathway. These previously unrecognized functions of TFEB expand its role beyond regulation of the autophagic pathway in the vascular system.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Cell Proliferation , Embryo, Mammalian/cytology , Endothelium, Vascular/cytology , Gene Expression Regulation, Developmental , Neovascularization, Physiologic , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cells, Cultured , Embryo, Mammalian/physiology , Endothelium, Vascular/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/genetics
6.
FASEB J ; 36(7): e22401, 2022 07.
Article in English | MEDLINE | ID: mdl-35726676

ABSTRACT

During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Snail Family Transcription Factors/metabolism , Activating Transcription Factor 3/metabolism , Cell Differentiation , Cell Line , Fibroblast Growth Factors , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Promoter Regions, Genetic/genetics , Up-Regulation
7.
Nature ; 543(7643): 72-77, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28225755

ABSTRACT

In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA/genetics , DNA/metabolism , Genes/genetics , RNA, Messenger/biosynthesis , Transcription Initiation, Genetic , Animals , Cell Line , DNA/chemistry , DNA (Cytosine-5-)-Methyltransferases/deficiency , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Polyadenylation , RNA Caps/metabolism , RNA Polymerase II/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Transcription Initiation Site , DNA Methyltransferase 3B
8.
J Biomed Sci ; 29(1): 81, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36229806

ABSTRACT

BACKGROUND: Patients with colon adenocarcinoma (COAD) exhibit significant heterogeneity in overall survival. The current tumor-node-metastasis staging system is insufficient to provide a precise prediction for prognosis. Identification and evaluation of new risk models by using big cancer data may provide a good way to identify prognosis-related signature. METHODS: We integrated different datasets and applied bioinformatic and statistical methods to construct a robust immune-associated risk model for COAD prognosis. Furthermore, a nomogram was constructed based on the gene signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual patients. RESULTS: The immune-associated risk model discriminated high-risk patients in our investigated and validated cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall survival and the nomogram exhibited high accuracy. Functional analysis interpreted the correlation between our risk model and its role in prognosis by classifying groups with different immune activities. Remarkably, patients in the low-risk group showed higher immune activity, while those in the high-risk group displayed a lower immune activity. CONCLUSIONS: Our study provides a novel tool that may contribute to the optimization of risk stratification for survival and personalized management of COAD.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Adenocarcinoma/pathology , Colonic Neoplasms/genetics , Humans , Nomograms , Prognosis , Risk Factors
9.
Nature ; 540(7633): 428-432, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27919074

ABSTRACT

The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFß, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.


Subject(s)
Cellular Senescence , Epistasis, Genetic , Growth and Development/genetics , Homeodomain Proteins/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Stress, Physiological/genetics , Aging , Animals , Cellular Senescence/genetics , Chromatin/genetics , Chromatin/metabolism , Female , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Male , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Regeneration/genetics
10.
Neural Plast ; 2022: 6197505, 2022.
Article in English | MEDLINE | ID: mdl-35880231

ABSTRACT

Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.


Subject(s)
Transcranial Direct Current Stimulation , Brain Mapping/methods , Dorsolateral Prefrontal Cortex , Humans , Magnetic Resonance Imaging/methods , Pilot Projects , Prefrontal Cortex/diagnostic imaging , Transcranial Direct Current Stimulation/methods
11.
Molecules ; 27(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684411

ABSTRACT

Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. The gemini nanoparticle formulation of polyphenolic curcumin significantly inhibits the viability of cancer cells. However, the molecular mechanisms and pathways underlying its toxicity in colon cancer are unclear. Here, we aimed to uncover the possible novel targets of gemini curcumin (Gemini-Cur) on colorectal cancer and related cellular pathways. After confirming the cytotoxic effect of Gemini-Cur by MTT and apoptotic assays, RNA sequencing was employed to identify differentially expressed genes (DEGs) in HCT-116 cells. On a total of 3892 DEGs (padj < 0.01), 442 genes showed a log2 FC >|2| (including 244 upregulated and 198 downregulated). Gene ontology (GO) enrichment analysis was performed. Protein−protein interaction (PPI) and gene-pathway networks were constructed by using STRING and Cytoscape. The pathway analysis showed that Gemini-Cur predominantly modulates pathways related to the cell cycle. The gene network analysis revealed five central genes, namely GADD45G, ATF3, BUB1B, CCNA2 and CDK1. Real-time PCR and Western blotting analysis confirmed the significant modulation of these genes in Gemini-Cur-treated compared to non-treated cells. In conclusion, RNA sequencing revealed novel potential targets of curcumin on cancer cells. Further studies are required to elucidate the molecular mechanism of action of Gemini-Cur regarding the modulation of the expression of hub genes.


Subject(s)
Colonic Neoplasms , Curcumin , Computational Biology , Curcumin/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Polyphenols/pharmacology , Protein Interaction Maps , Sequence Analysis, RNA , Transcriptome
12.
J Neurosci Res ; 98(10): 1843-1856, 2020 10.
Article in English | MEDLINE | ID: mdl-32686203

ABSTRACT

Dynamics within and between functional resting-state networks have a crucial role in determining both healthy and pathological brain functioning in humans. The possibility to noninvasively interact and selectively modulate the activity of networks would open to relevant applications in neuroscience. Here we tested a novel approach for multichannel, network-targeted transcranial direct current stimulation (net-tDCS), optimized to increase excitability of the sensorimotor network (SMN) while inducing cathodal inhibitory modulation over prefrontal and parietal brain regions negatively correlated with the SMN. Using an MRI-compatible multichannel transcranial electrical stimulation (tES) device, 20 healthy participants underwent real and sham tDCS while at rest in the MRI scanner. Changes in functional connectivity (FC) during and after stimulation were evaluated, looking at the intrinsic FC of the SMN and the strength of the negative connectivity between SMN and the rest of the brain. Standard, bifocal tDCS targeting left motor cortex (electrode ~C3) and right frontopolar (~Fp2) regions was tested as a control condition in a separate sample of healthy subjects to investigate network specificity of multichannel stimulation effects. Net-tDCS induced greater FC increase over the SMN compared to bifocal tDCS, during and after stimulation. Moreover, exploratory analysis of the impact of net-tDCS on negatively correlated networks showed an increase in the negative connectivity between SMN and prefrontal/parietal areas targeted by cathodal stimulation both during and after real net-tDCS. Results suggest preliminary evidence of the possibility of manipulating distributed network connectivity patterns through net-tDCS, with potential relevance for the development of cognitive enhancement and therapeutic tES solutions.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Transcranial Direct Current Stimulation/methods , Adult , Female , Humans , Male , Young Adult
13.
Eur J Neurosci ; 49(9): 1180-1195, 2019 05.
Article in English | MEDLINE | ID: mdl-30554448

ABSTRACT

Cross-sectional data suggest videogaming as promoting modifications in perceptual and cognitive skills of players, as well as inducing structural brain changes. However, whether such changes are both possible after a systematic gaming exposure, and last beyond the training period, is not known. Here, we originally quantified immediate and long-lasting cognitive and morphometric impact of a systematic gaming experience on a first-person shooter (FPS) game. Thirty-five healthy participants, assigned to a videogaming and a control group, underwent a cognitive assessment and structural magnetic resonance imaging at baseline (T0), immediately post-gaming (T1) and after  3 months (T2). Enhancements of cognitive performance were found on perceptual and attentional measures at both T1 and T2. Morphometric analysis revealed immediate structural changes involving bilateral medial and posterior thalamic nuclei, as well as bilateral superior temporal gyrus, right precentral gyrus, and left middle occipital gyrus. Notably, significant changes in pulvinar volume were still present at T2, while a voxel-wise regression analysis also linked baseline pulvinar volume and individual changes in gaming performance. Present findings extend over the notion that videogame playing might impact cognitive and brain functioning in a beneficial way, originally showing long-term brain structural changes even months after gaming practice. The involvement of posterior thalamic structures highlights a potential link between FPS games and thalamo-cortical networks related to attention mechanisms and multisensory integration processing.


Subject(s)
Cognition/physiology , Thalamus/physiology , Video Games , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
14.
Hum Brain Mapp ; 40(13): 3810-3831, 2019 09.
Article in English | MEDLINE | ID: mdl-31179585

ABSTRACT

Working memory (WM) refers to a set of cognitive processes that allows for the temporary storage and manipulation of information, crucial for everyday life skills. WM deficits are present in several neurological, psychiatric, and neurodevelopmental disorders, thus making the full understanding of its neural correlates a key aspect for the implementation of cognitive training interventions. Here, we present a quantitative meta-analysis focusing on the underlying neural substrates upon which the n-back, one of the most commonly used tasks for WM assessment, is believed to rely on, as highlighted by functional magnetic resonance imaging and positron emission tomography findings. Relevant published work was scrutinized through the activation likelihood estimate (ALE) statistical framework in order to generate a set of task-specific activation maps, according to n-back difficulty. Our results confirm the known involvement of frontoparietal areas across different types of n-back tasks, as well as the recruitment of subcortical structures, cerebellum and precuneus. Specific activations maps for four stimuli types, six presentation modalities, three WM loads and their combination are provided and discussed. Moreover, functional overlap with resting-state networks highlighted a strong similarity between n-back nodes and the Dorsal Attention Network, with less overlap with other networks like Salience, Language, and Sensorimotor ones. Additionally, neural deactivations during n-back tasks and their functional connectivity profile were examined. Clinical and functional implications are discussed in the context of potential noninvasive brain stimulation and cognitive enhancement/rehabilitation programs.


Subject(s)
Cerebral Cortex/physiology , Connectome , Executive Function/physiology , Magnetic Resonance Imaging , Memory, Short-Term/physiology , Nerve Net/physiology , Positron-Emission Tomography , Cerebral Cortex/diagnostic imaging , Humans , Nerve Net/diagnostic imaging
15.
Nucleic Acids Res ; 45(3): 1433-1441, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28180324

ABSTRACT

Functional characterization of the transcriptome requires tools for the systematic investigation of RNA post-transcriptional modifications. 2΄-O-methylation (2΄-OMe) of the ribose moiety is one of the most abundant post-transcriptional modifications of RNA, although its systematic analysis is difficult due to the lack of reliable high-throughput mapping methods. We describe here a novel high-throughput approach, named 2OMe-seq, that enables fast and accurate mapping at single-base resolution, and relative quantitation, of 2΄-OMe modified residues. We compare our method to other state-of-art approaches, and show that it achieves higher sensitivity and specificity. By applying 2OMe-seq to HeLa cells, we show that it is able to recover the majority of the annotated 2΄-OMe sites on ribosomal RNA. By performing knockdown of the Fibrillarin methyltransferase in mouse embryonic stem cells (ESCs) we show the ability of 2OMe-seq to capture 2΄-O-Methylation level variations. Moreover, using 2OMe-seq data we here report the discovery of 12 previously unannotated 2΄-OMe sites across 18S and 28S rRNAs, 11 of which are conserved in both human and mouse cells, and assigned the respective snoRNAs for all sites. Our approach expands the repertoire of methods for transcriptome-wide mapping of RNA post-transcriptional modifications, and promises to provide novel insights into the role of this modification.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Sequence Analysis, RNA/methods , Animals , Conserved Sequence , Embryonic Stem Cells/metabolism , HeLa Cells , Humans , Methylation , Mice , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , RNA, Ribosomal, 28S/chemistry , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 28S/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Transcriptome
16.
Hum Brain Mapp ; 39(12): 4870-4883, 2018 12.
Article in English | MEDLINE | ID: mdl-30113111

ABSTRACT

Human cognitive abilities and behavior are linked to functional coupling of many brain regions organized in distinct networks. Gaining insights on the role those networks' dynamics play in cognition and pathology requires their selective, reliable, and reversible manipulation. Here we document the possibility to manipulate the interplay between two brain networks in a controlled manner, by means of a Transcranial Magnetic Stimulation (TMS) protocol inducing spike timing dependent plasticity (STDP). Pairs of TMS pulses at specific inter-stimulus intervals, repeatedly delivered over two negatively correlated nodes of the default mode network (DMN) and the task-positive network (TPN) defined on the basis of individual functional magnetic resonance imaging (fMRI) data, induced a modulation of network-to-network connectivity, even reversing correlation from negative to slightly positive in 30% of cases. Results also suggest a baseline-dependent effect, with a greater connectivity modulation observed in participants with weaker between-networks connectivity strength right before TMS. Finally, modulation of task-evoked fMRI activity patterns during a sustained attention task was also observed after stimulation, with a faster or slower switch between rest and task blocks according to the timing of TMS pulses. The present findings promote paired associative TMS as a promising technique for controlled manipulation of fMRI connectivity dynamics in humans, as well as the causal investigation of brain-behavior relations.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Connectome/methods , Nerve Net/physiology , Neuronal Plasticity/physiology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation/methods , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Neuronavigation/methods , Young Adult
17.
Cogn Affect Behav Neurosci ; 18(3): 495-508, 2018 06.
Article in English | MEDLINE | ID: mdl-29572771

ABSTRACT

Coping abilities represent the individual set of mental and behavioral strategies adopted when facing stress or traumatic experiences. Coping styles related to avoidance have been linked to a disposition to develop psychiatric disorders such as PTSD, anxiety, and major depression, whereas problem-oriented coping skills have been positively correlated with well-being and high quality of life. Even though coping styles constitute an important determinant of resilience and can impact many aspects of everyday living, no study has investigated their brain functional connectivity underpinnings in humans. Here we analyzed both psychometric scores of coping and resting-state fMRI data from 102 healthy adult participants. Controlling for personality and problem-solving abilities, we identified significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks-namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus. Also, a reduced negative correlation between AS and DMN nodes explained variability in one specific coping style, related to avoiding problems while focusing on the emotional component of the stressor at hand, instead of relying on cognitive resources. These results might be integrated with current neurophysiological models of resilience and individual responses to stress, in order to understand the propensity to develop clinical conditions (e.g., PTSD) and predict the outcomes of psychotherapeutic interventions.


Subject(s)
Adaptation, Psychological/physiology , Brain Mapping , Brain/pathology , Neural Pathways/physiology , Adolescent , Adult , Emotions/physiology , Female , Humans , Male , Middle Aged , Stress Disorders, Post-Traumatic/physiopathology , Young Adult
18.
Biochim Biophys Acta ; 1859(10): 1322-32, 2016 10.
Article in English | MEDLINE | ID: mdl-27344374

ABSTRACT

In mammals the cell-cycle progression through the G1 phase is a tightly regulated process mediated by the transcriptional activation of early genes in response to mitogenic stimuli, whose dysregulation often leads to tumorigenesis. We here report the discovery by RNA-seq of cell-cycle regulated (CCR) long intergenic non-coding RNAs (lincRNAs), potentially involved in the control of the cell-cycle progression. We identified 10 novel lincRNAs expressed in response to serum treatment in mouse embryonic fibroblasts (MEFs) and in BALB/c fibroblasts, comparably to early genes. By loss-of-function experiments we found that lincRNA CCR492 is required for G1/S progression, localizes in the cell cytoplasm and contains 4 let-7 microRNA recognition elements (MREs). Mechanistically, CCR492 functions as a competing endogenous RNA (ceRNA) to antagonize the function of let-7 microRNAs, leading to the de-repression of c-Myc. Moreover, we show that ectopic expression of CCR492 along with a constitutively active H-Ras promotes cell transformation. Thus, we identified a new lincRNA expressed as an early gene in mammalian cells to regulate the cell-cycle progression by upregulating c-Myc expression.


Subject(s)
Cell Transformation, Neoplastic/genetics , Fibroblasts/metabolism , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Long Noncoding/genetics , Animals , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Embryo, Mammalian , Fibroblasts/cytology , G1 Phase , Mice , Mice, Inbred BALB C , MicroRNAs/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Long Noncoding/metabolism , Transcriptional Activation
19.
Bioinformatics ; 32(3): 459-61, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26487736

ABSTRACT

SUMMARY: The rapidly increasing number of discovered non-coding RNAs makes the understanding of their structure a key feature toward a deeper comprehension of gene expression regulation. Various enzymatic- and chemically- based approaches have been recently developed to allow whole-genome studies of RNA secondary structures. Several methods have been recently presented that allow high-throughput RNA structure probing (CIRS-seq, Structure-seq, SHAPE-seq, PARS, etc.) and unbiased structural inference of residues within RNAs in their native conformation. We here present an analysis toolkit, named RNA Structure Framework (RSF), which allows fast and fully-automated analysis of high-throughput structure probing data, from data pre-processing to whole-transcriptome RNA structure inference. AVAILABILITY AND IMPLEMENTATION: RSF is written in Perl and is freely available under the GPLv3 license from http://rsf.hugef-research.org. CONTACT: salvatore.oliviero@hugef-torino.org SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Genome, Human , Nucleic Acid Conformation , RNA/chemistry , Sequence Analysis, RNA/methods , Transcriptome/genetics , Humans , RNA/genetics
20.
Nucleic Acids Res ; 43(14): 6814-26, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-25925565

ABSTRACT

Ten-eleven translocation (Tet) genes encode for a family of hydroxymethylase enzymes involved in regulating DNA methylation dynamics. Tet1 is highly expressed in mouse embryonic stem cells (ESCs) where it plays a critical role the pluripotency maintenance. Tet1 is also involved in cell reprogramming events and in cancer progression. Although the functional role of Tet1 has been largely studied, its regulation is poorly understood. Here we show that Tet1 gene is regulated, both in mouse and human ESCs, by the stemness specific factors Oct3/4, Nanog and by Myc. Thus Tet1 is integrated in the pluripotency transcriptional network of ESCs. We found that Tet1 is switched off by cell proliferation in adult cells and tissues with a consequent genome-wide reduction of 5hmC, which is more evident in hypermethylated regions and promoters. Tet1 downmodulation is mediated by the Polycomb repressive complex 2 (PRC2) through H3K27me3 histone mark deposition. This study expands the knowledge about Tet1 involvement in stemness circuits in ESCs and provides evidence for a transcriptional relationship between Tet1 and PRC2 in adult proliferating cells improving our understanding of the crosstalk between the epigenetic events mediated by these factors.


Subject(s)
DNA-Binding Proteins/genetics , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Polycomb Repressive Complex 2/metabolism , Proto-Oncogene Proteins/genetics , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/metabolism , Down-Regulation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mixed Function Oxygenases , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL